IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v3y1975i4p345-364.html
   My bibliography  Save this article

On dynamic programming: Compactness of the space of policies

Author

Listed:
  • Schäl, Manfred

Abstract

The compactness of the set of policies in a dynamic programming decision model, which guarantees the existence of an optimal policy, is proven by reducing the problem to the compactness of the set of probability measures which are induced by the policies. When studying the set of probability measures, use is made of the weak topology and the so-called ws[infinity]-topology. A definition and a discussion of the latter topology is given in this paper, where we pay attention to criteria for relative compactness.

Suggested Citation

  • Schäl, Manfred, 1975. "On dynamic programming: Compactness of the space of policies," Stochastic Processes and their Applications, Elsevier, vol. 3(4), pages 345-364, October.
  • Handle: RePEc:eee:spapps:v:3:y:1975:i:4:p:345-364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(75)90031-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaśkiewicz, Anna & Matkowski, Janusz & Nowak, Andrzej S., 2011. "Persistently optimal policies in stochastic dynamic programming with generalized discounting," MPRA Paper 31755, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:3:y:1975:i:4:p:345-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.