IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v38y1991i1p157-165.html
   My bibliography  Save this article

Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions

Author

Listed:
  • Brooks, Maria Mori
  • Marron, J. Stephen

Abstract

In this paper, kernel function methods are considered for estimating the intensity function of a non-homogeneous Poisson process. A least-squares cross-validation bandwidth for the kernel intensity estimator is introduced, and it is proven that this bandwidth is asymptotically optimal for kernel intensity estimation.

Suggested Citation

  • Brooks, Maria Mori & Marron, J. Stephen, 1991. "Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions," Stochastic Processes and their Applications, Elsevier, vol. 38(1), pages 157-165, June.
  • Handle: RePEc:eee:spapps:v:38:y:1991:i:1:p:157-165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(91)90076-O
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    2. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    3. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:38:y:1991:i:1:p:157-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.