IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v31y1989i2p173-202.html
   My bibliography  Save this article

Stability of strong solutions of stochastic differential equations

Author

Listed:
  • Slominski, Leszek

Abstract

For a sequence of stochastic differential equations of the type where [latin small letter f with hook] satisfies a Lipschitz condition, a stability theorem is presented under jointly weak convergence of driving processes . As a consequence the case of uniform convergence of and is discussed.

Suggested Citation

  • Slominski, Leszek, 1989. "Stability of strong solutions of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 173-202, April.
  • Handle: RePEc:eee:spapps:v:31:y:1989:i:2:p:173-202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(89)90087-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    2. Aleksander Janicki & Zbigniew Michna & Aleksander Weron, 1996. "Approximation of stochastic differential equations driven by alpha-stable Levy motion," HSC Research Reports HSC/96/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    3. Colino, Jesús P., 2008. "Weak convergence in credit risk," DES - Working Papers. Statistics and Econometrics. WS ws085518, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Yamada, Keigo, 1999. "Two limit theorems for queueing systems around the convergence of stochastic integrals with respect to renewal processes," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 103-128, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:31:y:1989:i:2:p:173-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.