IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v2y1974i4p311-336.html
   My bibliography  Save this article

Random walks on graphs

Author

Listed:
  • Göbel, F.
  • Jagers, A. A.

Abstract

In this paper the following Markov chains are considered: the state space is the set of vertices of a connected graph, and for each vertex the transition is always to an adjacent vertex, such that each of the adjacent vertices has the same probability. Detailed results are given on the expectation of recurrence times, of first-entrance times, and of symmetrized first-entrance times (called commuting times). The problem of characterizing all connected graphs for which the commuting time is constant over all pairs of adjacent vertices is solved almost completely.

Suggested Citation

  • Göbel, F. & Jagers, A. A., 1974. "Random walks on graphs," Stochastic Processes and their Applications, Elsevier, vol. 2(4), pages 311-336, October.
  • Handle: RePEc:eee:spapps:v:2:y:1974:i:4:p:311-336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(74)90001-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diala Wehbe & Nicolas Wicker, 2022. "Convergence Details About k-DPP Monte-Carlo Sampling for Large Graphs," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 188-203, May.
    2. Guo, Wei-Feng & Zhang, Shao-Wu, 2016. "A general method of community detection by identifying community centers with affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 508-519.
    3. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    5. Silver, Grant & Akbarzadeh, Meisam & Estrada, Ernesto, 2018. "Tuned communicability metrics in networks. The case of alternative routes for urban traffic," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 402-413.
    6. Kivimäki, Ilkka & Shimbo, Masashi & Saerens, Marco, 2014. "Developments in the theory of randomized shortest paths with a comparison of graph node distances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 600-616.
    7. Palacios, JoséLuis & Renom, JoséMiguel, 1998. "Random walks on edge transitive graphs," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 29-34, January.
    8. Mueller, Falko, 2023. "Link and edge weight prediction in air transport networks — An RNN approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    9. Feng, Lihua & Liu, Weijun & Lu, Lu & Wang, Wei & Yu, Guihai, 2022. "The access time of random walks on trees with given partition," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    10. Ranjan, Gyan & Zhang, Zhi-Li, 2013. "Geometry of complex networks and topological centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3833-3845.
    11. Pei, Panpan & Liu, Bo & Jiao, Licheng, 2017. "Link prediction in complex networks based on an information allocation index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:2:y:1974:i:4:p:311-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.