IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v28y1988i1p47-59.html
   My bibliography  Save this article

Simple consistent estimation of the coefficients of a linear filter

Author

Listed:
  • Brockwell, P. J.
  • Davis, R. A.

Abstract

A simple procedure is proposed for estimating the coefficients {[psi]} from observations of the linear process X1=[summation operator]xJ=0[psi]JZ1-j, 1=1,2... The method is based on the representation of X1 in terms of the innovations, Xn-Xn, N=1,..., 1, where Xn is the best mean square predictor of Xn is span {X1,...X0-1}. The asymptotic distribution of the sequence of estimators is derived and its applications to inference for ARMA processes are discussed.

Suggested Citation

  • Brockwell, P. J. & Davis, R. A., 1988. "Simple consistent estimation of the coefficients of a linear filter," Stochastic Processes and their Applications, Elsevier, vol. 28(1), pages 47-59, April.
  • Handle: RePEc:eee:spapps:v:28:y:1988:i:1:p:47-59
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(88)90063-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. S. Poskitt, 2004. "On The Identification and Estimation of Partially Nonstationary ARMAX Systems," Monash Econometrics and Business Statistics Working Papers 20/04, Monash University, Department of Econometrics and Business Statistics.
    2. Vougas, Dimitrios V., 2008. "New exact ML estimation and inference for a Gaussian MA(1) process," Economics Letters, Elsevier, vol. 99(1), pages 172-176, April.
    3. Jirak, Moritz, 2014. "Simultaneous confidence bands for sequential autoregressive fitting," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 130-149.
    4. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    5. Anderson, Paul L. & Meerschaert, Mark M. & Vecchia, Aldo V., 1999. "Innovations algorithm for periodically stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 149-169, September.
    6. Anderson, Paul L. & Kavalieris, Laimonis & Meerschaert, Mark M., 2008. "Innovations algorithm asymptotics for periodically stationary time series with heavy tails," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 94-116, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:28:y:1988:i:1:p:47-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.