IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v24y1987i2p157-202.html
   My bibliography  Save this article

Some central limit theorems for Markov paths and some properties of Gaussian random fields

Author

Listed:
  • Adler, Robert J.
  • Epstein, R.

Abstract

Our primary aim is to "build" versions of generalised Gaussian processes from simple, elementary components in such a way that as many as possible of the esoteric properties of these elusive objects become intuitive. For generalised Gaussian processes, or fields, indexed by smooth functions or measures on , our building blocks will be simple Markov processes whose state space is . Roughly speaking, by summing functions of the local times of the Markov processes we shall, via a central limit theorem type of result, obtain the Gaussian field. This central limit result, together with related results indicating how additive functionals of the Markov processes generate additive functionals of the fields, yield considerable insight into properties of generalised Gaussian processes such as Markovianess, self-similarity, "locality" of functionals, etc. Although the paper is comprised primarily of new results, and despite the fact that the subject matter is somewhat esoteric, our aims are primarily didactic and expository--we want to try to initiate the uninitiated into some of the mysteries of generalised processes via an easily understood model.

Suggested Citation

  • Adler, Robert J. & Epstein, R., 1987. "Some central limit theorems for Markov paths and some properties of Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 24(2), pages 157-202, May.
  • Handle: RePEc:eee:spapps:v:24:y:1987:i:2:p:157-202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(87)90012-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2015. "From intersection local time to the Rosenblatt process," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1227-1249, September.
    2. Bojdecki, Tomasz & Talarczyk, Anna, 2005. "Particle picture approach to the self-intersection local time of density processes in," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 449-479, March.
    3. Feldman, Raisa E. & Iyer, Srikanth K., 1996. "A representation for functionals of superprocesses via particle picture," Stochastic Processes and their Applications, Elsevier, vol. 64(2), pages 173-186, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:24:y:1987:i:2:p:157-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.