IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v1y1973i3p217-235.html
   My bibliography  Save this article

On exponential ergodicity and spectral structure for birth-death processes, II

Author

Listed:
  • Callaert, Herman
  • Keilson, Julian

Abstract

In Part I, Feller's boundary theory was described with simple conditions for process classification. The implications of this boundary classification scheme for spectral structure and exponential ergodicity are examined in Part II. Conditions under which the spectral span is finite or infinite are established. A time-dependent norm is exhibited describing the exponentiality of the convergence and its uniformity. Specific systems are discussed in detail: Contents: 1. 7. Spectral structure for the M/M/I process 2. 8. Exponential ergodicity for processes with entrance, exit, and regular boundaries 3. 9. Exponential ergodicity for processes with natural boundaries 4. 10. Uniformity of exponential convergence 5. 11. Finite and Infinite spectral span 6. 12. Skip-free processes on the full lattice

Suggested Citation

  • Callaert, Herman & Keilson, Julian, 1973. "On exponential ergodicity and spectral structure for birth-death processes, II," Stochastic Processes and their Applications, Elsevier, vol. 1(3), pages 217-235, July.
  • Handle: RePEc:eee:spapps:v:1:y:1973:i:3:p:217-235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(73)90001-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Crescenzo, Antonio & Giorno, Virginia & Nobile, Amelia G., 2016. "Constructing transient birth–death processes by means of suitable transformations," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 152-171.
    2. Zeifman, A.I., 1995. "Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 157-173, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:1:y:1973:i:3:p:217-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.