IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v181y2025ics0304414924002436.html
   My bibliography  Save this article

Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation

Author

Listed:
  • Alfonsi, Aurélien

Abstract

This work defines and studies one-dimensional convolution kernels that preserve nonnegativity. When the past dynamics of a process is integrated with a convolution kernel like in Stochastic Volterra Equations or in the jump intensity of Hawkes processes, this property allows to get the nonnegativity of the integral. We give characterizations of these kernels and show in particular that completely monotone kernels preserve nonnegativity. We then apply these results to analyze the stochastic invariance of a closed convex set by Stochastic Volterra Equations. We also get a comparison result in dimension one. Last, when the kernel is a positive linear combination of decaying exponential functions, we present a second order approximation scheme for the weak error that stays in the closed convex domain under suitable assumptions. We apply these results to the rough Heston model and give numerical illustrations.

Suggested Citation

  • Alfonsi, Aurélien, 2025. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Stochastic Processes and their Applications, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002436
    DOI: 10.1016/j.spa.2024.104535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924002436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:181:y:2025:i:c:s0304414924002436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.