IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v179y2025ics0304414924002205.html
   My bibliography  Save this article

First passage percolation with recovery

Author

Listed:
  • Candellero, Elisabetta
  • Garcia-Sanchez, Tom

Abstract

First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph G place a red particle at a reference vertex o and colorless particles (seeds) at all other vertices. The red particle starts spreading a red first passage percolation of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate γ>0, when a clock rings the corresponding red vertex turns black. For t≥0, let Ht and Mt denote the size of the longest red path and of the largest red cluster present at time t. If G is the semi-line, then for all γ>0 almost surely lim suptHtloglogtlogt=1 and lim inftHt=0. In contrast, if G is an infinite Galton–Watson tree with offspring mean m>1 then, for all γ>0, almost surely lim inftHtlogtt≥m−1 and lim inftMtloglogtt≥m−1, while lim suptMtect≤1, for all c>m−1. Also, almost surely as t→∞, for all γ>0Ht is of order at most t. Furthermore, if we restrict our attention to bounded-degree graphs, then for any ɛ>0 there is a critical value γc>0 so that for all γ>γc, almost surely lim suptMtt≤ɛ.

Suggested Citation

  • Candellero, Elisabetta & Garcia-Sanchez, Tom, 2025. "First passage percolation with recovery," Stochastic Processes and their Applications, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002205
    DOI: 10.1016/j.spa.2024.104512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924002205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:179:y:2025:i:c:s0304414924002205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.