IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v177y2024ics0304414924001492.html
   My bibliography  Save this article

A class of space–time discretizations for the stochastic p-Stokes system

Author

Listed:
  • Le, Kim-Ngan
  • Wichmann, Jörn

Abstract

The main objective of the present paper is to construct a new class of space–time discretizations for the stochastic p-Stokes system and analyze its stability and convergence properties. We derive regularity results for the approximation that are similar to the natural regularity of solutions. One of the key arguments relies on discrete extrapolation that allows us to relate lower moments of discrete maximal processes. We show that, if the generic spatial discretization is constraint conforming, then the velocity approximation satisfies a best-approximation property in the natural distance. Moreover, we present an example such that the resulting velocity approximation converges with rate 1/2 in time and 1 in space towards the (unknown) target velocity with respect to the natural distance. The theory is corroborated by numerical experiments.

Suggested Citation

  • Le, Kim-Ngan & Wichmann, Jörn, 2024. "A class of space–time discretizations for the stochastic p-Stokes system," Stochastic Processes and their Applications, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:spapps:v:177:y:2024:i:c:s0304414924001492
    DOI: 10.1016/j.spa.2024.104443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924001492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:177:y:2024:i:c:s0304414924001492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.