IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v174y2024ics030441492400084x.html
   My bibliography  Save this article

Self-similar co-ascent processes and Palm calculus

Author

Listed:
  • Mönch, Christian

Abstract

We study certain renormalised first passage bridges of self-similar processes, generalising the “Brownian co-ascent process” discussed by Panzo (Sém. Prob. L, 2019) and introduced by Rosenbaum and Yor (Sém. Prob. XLVI, 2014). We provide a characterisation of co-ascent processes via Palm measures, namely that the co-ascent of a self-similar process is the process under the Palm distribution associated with its record measure. We use this representation to derive a distributional identity for α-stable Lévy-subordinators with α∈(0,1).

Suggested Citation

  • Mönch, Christian, 2024. "Self-similar co-ascent processes and Palm calculus," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:spapps:v:174:y:2024:i:c:s030441492400084x
    DOI: 10.1016/j.spa.2024.104378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492400084X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Last, Günter & Thorisson, Hermann, 2015. "Construction and characterization of stationary and mass-stationary random measures on Rd," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4473-4488.
    2. Aurzada, Frank & Guillotin-Plantard, Nadine & Pène, Françoise, 2018. "Persistence probabilities for stationary increment processes," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1750-1771.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Mönch, 2022. "Universality for Persistence Exponents of Local Times of Self-Similar Processes with Stationary Increments," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1842-1862, September.
    2. Peng, Qidi & Rao, Nan, 2023. "Fractional Brownian motion: Small increments and first exit time from one-sided barrier," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Aurzada, Frank & Buck, Micha & Kilian, Martin, 2020. "Penalizing fractional Brownian motion for being negative," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6625-6637.
    4. Aurzada, Frank & Mukherjee, Sumit, 2023. "Persistence probabilities of weighted sums of stationary Gaussian sequences," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 286-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:174:y:2024:i:c:s030441492400084x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.