IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v171y2024ics030441492400019x.html
   My bibliography  Save this article

On Rio’s proof of limit theorems for dependent random fields

Author

Listed:
  • Thành, Lê Vǎn

Abstract

This paper presents an exposition of Rio’s proof of the strong law of large numbers and extends his method to random fields. In addition to considering the rate of convergence in the Marcinkiewicz–Zygmund strong law of large numbers, we go a step further by establishing (i) the Hsu–Robbins–Erdös–Spitzer–Baum–Katz theorem, (ii) the Feller weak law of large numbers, and (iii) the Pyke–Root theorem on mean convergence for dependent random fields. These results significantly improve several particular cases in the literature. The proof is based on new maximal inequalities that hold for random fields satisfying a very general dependence structure.

Suggested Citation

  • Thành, Lê Vǎn, 2024. "On Rio’s proof of limit theorems for dependent random fields," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:spapps:v:171:y:2024:i:c:s030441492400019x
    DOI: 10.1016/j.spa.2024.104313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492400019X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergey Utev & Magda Peligrad, 2003. "Maximal Inequalities and an Invariance Principle for a Class of Weakly Dependent Random Variables," Journal of Theoretical Probability, Springer, vol. 16(1), pages 101-115, January.
    2. Aiting Shen & Andrei Volodin, 2017. "Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 605-625, November.
    3. Peligrad, M. & Peligrad, C., 2023. "Convergence of series of conditional expectations," Statistics & Probability Letters, Elsevier, vol. 200(C).
    4. Qi-Man Shao, 2000. "A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 13(2), pages 343-356, April.
    5. Rosalsky, Andrew & Thành, Lê Vǎn, 2021. "A note on the stochastic domination condition and uniform integrability with applications to the strong law of large numbers," Statistics & Probability Letters, Elsevier, vol. 178(C).
    6. Richard C. Bradley & Cristina Tone, 2017. "A Central Limit Theorem for Non-stationary Strongly Mixing Random Fields," Journal of Theoretical Probability, Springer, vol. 30(2), pages 655-674, June.
    7. Magda Peligrad & Allan Gut, 1999. "Almost-Sure Results for a Class of Dependent Random Variables," Journal of Theoretical Probability, Springer, vol. 12(1), pages 87-104, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernou, Ismahen & Boukhari, Fakhreddine, 2022. "Limit theorems for dependent random variables with infinite means," Statistics & Probability Letters, Elsevier, vol. 189(C).
    2. Dagmara Dudek & Anna Kuczmaszewska, 2024. "Some practical and theoretical issues related to the quantile estimators," Statistical Papers, Springer, vol. 65(6), pages 3917-3933, August.
    3. Leshun Xu & Alan Lee & Thomas Lumley, 2023. "A functional central limit theorem on non-stationary random fields with nested spatial structure," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 215-234, April.
    4. Rustam Ibragimov & Dwight Jaffee & Johan Walden, 2018. "Equilibrium with Monoline and Multiline Structures [Uncertainty and the welfare economics of medical care]," Review of Finance, European Finance Association, vol. 22(2), pages 595-632.
    5. Richard C. Bradley & Cristina Tone, 2017. "A Central Limit Theorem for Non-stationary Strongly Mixing Random Fields," Journal of Theoretical Probability, Springer, vol. 30(2), pages 655-674, June.
    6. Ruonan Xu & Jeffrey M. Wooldridge, 2022. "A Design-Based Approach to Spatial Correlation," Papers 2211.14354, arXiv.org.
    7. Chollete, Lorán & de la Peña, Victor & Klass, Michael, 2023. "The price of independence in a model with unknown dependence," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 51-58.
    8. Richard C. Bradley, 2001. "A Stationary Rho-Mixing Markov Chain Which Is Not “Interlaced” Rho-Mixing," Journal of Theoretical Probability, Springer, vol. 14(3), pages 717-727, July.
    9. Feng, Fengxiang, 2023. "Baum–Katz-type complete and complete moment convergence theorems for the maximum of partial sums under sub-linear expectations," Statistics & Probability Letters, Elsevier, vol. 197(C).
    10. Lê Vǎn Thành, 2023. "On a new concept of stochastic domination and the laws of large numbers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 74-106, March.
    11. Wensheng Wang, 2017. "Large Deviations for Sums of Random Vectors Attracted to Operator Semi-Stable Laws," Journal of Theoretical Probability, Springer, vol. 30(1), pages 64-84, March.
    12. Li, Kunpeng, 2022. "Threshold spatial autoregressive model," MPRA Paper 113568, University Library of Munich, Germany.
    13. Chang, Mengmeng & Miao, Yu, 2023. "Generalized weak laws of large numbers in Hilbert spaces," Statistics & Probability Letters, Elsevier, vol. 197(C).
    14. Sergey Utev & Magda Peligrad, 2003. "Maximal Inequalities and an Invariance Principle for a Class of Weakly Dependent Random Variables," Journal of Theoretical Probability, Springer, vol. 16(1), pages 101-115, January.
    15. Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209, arXiv.org, revised Mar 2024.
    16. Yu Miao & Yanyan Tang, 2023. "Large deviation inequalities of Bayesian estimator in nonlinear regression models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 171-191, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:171:y:2024:i:c:s030441492400019x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.