IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v169y2024ics0304414923002478.html
   My bibliography  Save this article

An explicit approximation for super-linear stochastic functional differential equations

Author

Listed:
  • Li, Xiaoyue
  • Mao, Xuerong
  • Song, Guoting

Abstract

Since it is difficult to implement implicit schemes on the infinite-dimensional space, we aim to develop the explicit numerical method for approximating super-linear stochastic functional differential equations (SFDEs). Precisely, borrowing the truncation idea and linear interpolation we propose an explicit truncated Euler–Maruyama (EM) scheme for SFDEs, and obtain the boundedness and convergence in Lp(p≥2). We also prove the convergence rate with 1/2 order. Different from some previous works (Mao, 2003; Zhang et al., 2018), we release the global Lipschitz restriction on the diffusion coefficient. Furthermore, we reveal that numerical solutions preserve the underlying exponential stability. Moreover, we give several examples to support our theory.

Suggested Citation

  • Li, Xiaoyue & Mao, Xuerong & Song, Guoting, 2024. "An explicit approximation for super-linear stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:spapps:v:169:y:2024:i:c:s0304414923002478
    DOI: 10.1016/j.spa.2023.104275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923002478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.104275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flavia Sancier & Salah Mohammed, 2017. "An Option Pricing Model with Memory," Papers 1709.00468, arXiv.org.
    2. Nguyen, Dang H. & Nguyen, Nhu N. & Yin, George, 2021. "Stochastic functional Kolmogorov equations, I: Persistence," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 319-364.
    3. Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
    2. Cao, Nan & Fu, Xianlong, 2023. "Stationary distribution and extinction of a Lotka–Volterra model with distribute delay and nonlinear stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Hongjiang Qian & Zhexin Wen & George Yin, 2022. "Numerical solutions for optimal control of stochastic Kolmogorov systems with regime-switching and random jumps," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 105-125, April.
    4. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    5. Liu, Yuanyuan & Wen, Zhexin, 2024. "Two-time-scale stochastic functional differential equations with wideband noises and jumps," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.
    7. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    8. Christian Bayer & Paul Hager & Sebastian Riedel & John Schoenmakers, 2021. "Optimal stopping with signatures," Papers 2105.00778, arXiv.org.
    9. Cont, Rama & Kalinin, Alexander, 2020. "On the support of solutions to stochastic differential equations with path-dependent coefficients," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2639-2674.
    10. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Promel, 2021. "Model-free Portfolio Theory: A Rough Path Approach," Papers 2109.01843, arXiv.org, revised Oct 2022.
    11. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    12. Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jan 2024.
    13. Henry Chiu & Rama Cont, 2023. "A model‐free approach to continuous‐time finance," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 257-273, April.
    14. Georgii Riabov & Aleh Tsyvinski, 2021. "Policy with stochastic hysteresis," Papers 2104.10225, arXiv.org.
    15. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    16. Christian Bayer & Luca Pelizzari & John Schoenmakers, 2023. "Primal and dual optimal stopping with signatures," Papers 2312.03444, arXiv.org.
    17. Anton Plaksin, 2020. "Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 22-42, October.
    18. Bruno Bouchard & Xiaolu Tan, 2021. "A quasi-sure optional decomposition and super-hedging result on the Skorokhod space," Finance and Stochastics, Springer, vol. 25(3), pages 505-528, July.
    19. Shreya Bose & Ibrahim Ekren, 2021. "Multidimensional Kyle-Back model with a risk averse informed trader," Papers 2111.01957, arXiv.org.
    20. Bingyan Han & Hoi Ying Wong, 2019. "Time-inconsistency with rough volatility," Papers 1907.11378, arXiv.org, revised Dec 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:169:y:2024:i:c:s0304414923002478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.