IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v15y1983i3p295-311.html
   My bibliography  Save this article

The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory

Author

Listed:
  • Nummelin, Esa
  • Tuominen, Pekka

Abstract

We derive sufficient conditions for [is proportional to] [lambda] (dx)||Pn(x, ·) - [pi]|| to be of order o([psi](n)-1), where Pn (x, A) are the transition probabilities of an aperiodic Harris recurrent Markov chain, [pi] is the invariant probability measure, [lambda] an initial distribution and [psi] belongs to a suitable class of non-decreasing sequences. The basic condition involved is the ergodicity of order [psi], which in a countable state space is equivalent to [Sigma] [psi](n)Pi{[tau]i[greater-or-equal, slanted]n} 0 and [is proportional to] [psi](t)(1- F(t))dt

Suggested Citation

  • Nummelin, Esa & Tuominen, Pekka, 1983. "The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 295-311, August.
  • Handle: RePEc:eee:spapps:v:15:y:1983:i:3:p:295-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(83)90037-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meitz, Mika & Saikkonen, Pentti, 2022. "Subgeometrically Ergodic Autoregressions," Econometric Theory, Cambridge University Press, vol. 38(5), pages 959-985, October.
    2. Connor, S.B. & Fort, G., 2009. "State-dependent Foster-Lyapunov criteria for subgeometric convergence of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4176-4193, December.
    3. Mika Meitz & Pentti Saikkonen, 2022. "Subgeometrically ergodic autoregressions with autoregressive conditional heteroskedasticity," Papers 2205.11953, arXiv.org, revised Apr 2023.
    4. Mika Meitz & Pentti Saikkonen, 2019. "Subgeometric ergodicity and $\beta$-mixing," Papers 1904.07103, arXiv.org, revised Apr 2019.
    5. Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
    6. Iksanov, Alexander & Meiners, Matthias, 2015. "Rate of convergence in the law of large numbers for supercritical general multi-type branching processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 708-738.
    7. Yong-Hua Mao & Yan-Hong Song, 2022. "Criteria for Geometric and Algebraic Transience for Discrete-Time Markov Chains," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1974-2008, September.
    8. Nummelin, Esa, 1997. "On distributionally regenerative Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 241-264, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:15:y:1983:i:3:p:295-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.