IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v15y1983i3p271-293.html
   My bibliography  Save this article

Estimation de la transition de probabilité d'une chaîne de Markov doëblin-récurrente. étude du cas du processus autorégressif général d'ordre 1

Author

Listed:
  • Doukhan, Paul
  • Ghindès, Marcel

Abstract

Nous considérons une chaîne de Markov homogène {Xn}. Nous estimons la densité de sa probabilité de transition à l'aide d'estimateurs à noyaux. Nous appliquons ces méthodes à l'estimation de la fonction f, supposée inconnue, du processus défini par X1 et Xn+1 = f(Xn)+[var epsilon]n où {[var epsilon]n} est un bruit (suite de variables aléatoires indépendantes équidistribuées) de loi inconnue. Les vitesses de convergence en moyenne quadratique intégrée sont identiques à celles des estimations classiques de densités. Nous utilisons ce type de risque pourobtenir des informations globales au sujet des estimées. Nous montrons aussi que ces risques passent par un minimum lorsque la variance du bruit évolue. Enfin, nous estimons la variance du bruit par plusieurs méthodes. We consider an homogenous Markov chain {Xn}. We estimate its transition probability density with kernel estimators. We apply these methods to the estimation of the unknown function f of the process defined by X1 and Xn+1 = f(Xn) + [var epsilon]n, where {[var epsilon]n} is a noise (sequence of independent identically distributed random variables) of unknown law. The mean quadratic integrated rates of convergence are identical to those of classical density estimations. These risks are used here because we want some global informations about our estimates. We also study the average of those risks when the variance changes; it is shown that they reach a minimal value for some optimal variance. We study uniform convergence of our estimators. We finally estimate the variance of the noise and its density.

Suggested Citation

  • Doukhan, Paul & Ghindès, Marcel, 1983. "Estimation de la transition de probabilité d'une chaîne de Markov doëblin-récurrente. étude du cas du processus autorégressif général d'ordre 1," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 271-293, August.
  • Handle: RePEc:eee:spapps:v:15:y:1983:i:3:p:271-293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(83)90036-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    2. Arvanitis, Stelios, 2017. "A note on the limit theory of a Dickey–Fuller unit root test with heavy tailed innovations," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 198-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:15:y:1983:i:3:p:271-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.