IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v151y2022icp101-126.html
   My bibliography  Save this article

A probabilistic approach to Neumann problems for elliptic PDEs with nonlinear divergence terms

Author

Listed:
  • Wong, Chi Hong
  • Yang, Xue
  • Zhang, Jing

Abstract

By a probabilistic method, we prove the existence and uniqueness of weak solutions to Neumann problems for a class of semi-linear elliptic partial differential equations with nonlinear singular divergence terms, which can only be understood in distributional sense. This leads to the further study on a new class of infinite horizon backward stochastic differential equations, which involves integrals with respect to a forward–backward martingale and a singular continuous increasing process.

Suggested Citation

  • Wong, Chi Hong & Yang, Xue & Zhang, Jing, 2022. "A probabilistic approach to Neumann problems for elliptic PDEs with nonlinear divergence terms," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 101-126.
  • Handle: RePEc:eee:spapps:v:151:y:2022:i:c:p:101-126
    DOI: 10.1016/j.spa.2022.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922001284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Ying, 1993. "Probabilistic interpretation of a system of quasilinear elliptic partial differential equations under Neumann boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 48(1), pages 107-121, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maticiuc, Lucian & Răşcanu, Aurel, 2016. "On the continuity of the probabilistic representation of a semilinear Neumann–Dirichlet problem," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 572-607.
    2. Anis Matoussi & Michael Scheutzow, 2002. "Stochastic PDEs Driven by Nonlinear Noise and Backward Doubly SDEs," Journal of Theoretical Probability, Springer, vol. 15(1), pages 1-39, January.
    3. Maticiuc, Lucian & Rascanu, Aurel, 2010. "A stochastic approach to a multivalued Dirichlet-Neumann problem," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 777-800, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:151:y:2022:i:c:p:101-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.