IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v150y2022icp844-852.html
   My bibliography  Save this article

To stay discovered: On tournament mean score sequences and the Bradley–Terry model

Author

Listed:
  • Aldous, David J.
  • Kolesnik, Brett

Abstract

On being told that a piece of work he thought was his discovery had duplicated an earlier mathematician’s work, Larry Shepp once replied “Yes, but when I discovered it, it stayed discovered.” In this spirit we give discussion and probabilistic proofs of two related known results (Moon 1963, Joe 1988) on random tournaments which seem surprisingly unknown to modern probabilists. In particular, our proof of Moon’s theorem on mean score sequences seems more constructive than previous proofs. This provides a comparatively concrete introduction to a longstanding mystery, the lack of a canonical construction for a joint distribution in the representation theorem for convex order.

Suggested Citation

  • Aldous, David J. & Kolesnik, Brett, 2022. "To stay discovered: On tournament mean score sequences and the Bradley–Terry model," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 844-852.
  • Handle: RePEc:eee:spapps:v:150:y:2022:i:c:p:844-852
    DOI: 10.1016/j.spa.2019.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918306665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:150:y:2022:i:c:p:844-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.