IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v141y2021icp57-78.html
   My bibliography  Save this article

Wong–Zakai approximations for quasilinear systems of Itô’s type stochastic differential equations

Author

Listed:
  • Lanconelli, Alberto
  • Scorolli, Ramiro

Abstract

We extend to the multidimensional case a Wong–Zakai-type theorem proved by Hu and Øksendal (1996) for scalar quasi-linear Itô stochastic differential equations (SDEs). More precisely, with the aim of approximating the solution of a quasilinear system of Itô’s SDEs, we consider for any finite partition of the time interval [0,T] a system of differential equations, where the multidimensional Brownian motion is replaced by its polygonal approximation and the product between diffusion coefficients and smoothed white noise is interpreted as a Wick product. We remark that in the one dimensional case this type of equations can be reduced, by means of a transformation related to the method of characteristics, to the study of a random ordinary differential equation. Here, instead, one is naturally led to the investigation of a semilinear hyperbolic system of partial differential equations that we utilize for constructing a solution of the Wong–Zakai approximated systems. We show that the law of each element of the approximating sequence solves in the sense of distribution a Fokker–Planck equation and that the sequence converges to the solution of the Itô equation, as the mesh of the partition tends to zero.

Suggested Citation

  • Lanconelli, Alberto & Scorolli, Ramiro, 2021. "Wong–Zakai approximations for quasilinear systems of Itô’s type stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 57-78.
  • Handle: RePEc:eee:spapps:v:141:y:2021:i:c:p:57-78
    DOI: 10.1016/j.spa.2021.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921001198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Da Pelo, Paolo & Lanconelli, Alberto & Stan, Aurel I., 2013. "An Itô formula for a family of stochastic integrals and related Wong–Zakai theorems," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3183-3200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilel Kacem Ben Ammou & Alberto Lanconelli, 2019. "Rate of Convergence for Wong–Zakai-Type Approximations of Itô Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 32(4), pages 1780-1803, December.
    2. Kang, Yuanbao & Wang, Caishi, 2014. "Itô formula for one-dimensional continuous-time quantum random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 154-162.
    3. Lanconelli, Alberto, 2018. "Standardizing densities on Gaussian spaces," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 243-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:141:y:2021:i:c:p:57-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.