IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i3p1435-1460.html
   My bibliography  Save this article

Heavy traffic limit for the workload plateau process in a tandem queue with identical service times

Author

Listed:
  • Gromoll, H. Christian
  • Terwilliger, Bryce
  • Zwart, Bert

Abstract

We consider a two-node tandem queueing network in which the upstream queue has renewal arrivals with generally distributed service times, and each job reuses its upstream service requirement when moving to the downstream queue. Both servers employ the first-in-first-out policy. The reuse of service times creates strong dependence at the second queue, making its workload difficult to analyze. To investigate the evolution of workload in the second queue, we introduce and study a process M, called the plateau process, which encodes most of the information in the workload process. We focus on the case of infinite-variance service times and show that under appropriate scaling, workload in the first queue converges, and although the workload in the second queue does not converge, the plateau process does converge to a limit M∗ that is a certain function of two independent Lévy processes. Using excursion theory, we derive some useful properties of M∗ and compare a time changed version of it to a limit process derived in previous work.

Suggested Citation

  • Gromoll, H. Christian & Terwilliger, Bryce & Zwart, Bert, 2020. "Heavy traffic limit for the workload plateau process in a tandem queue with identical service times," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1435-1460.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:3:p:1435-1460
    DOI: 10.1016/j.spa.2019.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918305362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin I. Reiman & Lawrence M. Wein, 1999. "Heavy Traffic Analysis of Polling Systems in Tandem," Operations Research, INFORMS, vol. 47(4), pages 524-534, August.
    2. Ward Whitt, 1980. "Some Useful Functions for Functional Limit Theorems," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 67-85, February.
    3. H. Christian Gromoll & Bryce Terwilliger & Bert Zwart, 2018. "Heavy traffic limit for a tandem queue with identical service times," Queueing Systems: Theory and Applications, Springer, vol. 89(3), pages 213-241, August.
    4. Boxma, O. J., 1978. "On the longest service time in a busy period of the M[+45 degree rule]G[+45 degree rule]1 queue," Stochastic Processes and their Applications, Elsevier, vol. 8(1), pages 93-100, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stilian A. Stoev & Murad S. Taqqu, 2007. "Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 55-87, March.
    2. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    3. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    4. Anatolii A. Puhalskii, 2003. "On Large Deviation Convergence of Invariant Measures," Journal of Theoretical Probability, Springer, vol. 16(3), pages 689-724, July.
    5. Saulius Minkevičius & Igor Katin & Joana Katina & Irina Vinogradova-Zinkevič, 2021. "On Little’s Formula in Multiphase Queues," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    6. Doruk Cetemen & Can Urgun & Leeat Yariv, 2023. "Collective Progress: Dynamics of Exit Waves," Journal of Political Economy, University of Chicago Press, vol. 131(9), pages 2402-2450.
    7. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    8. Cetemen, Doruk & Hwang, Ilwoo & Kaya, Ayça, 2020. "Uncertainty-driven cooperation," Theoretical Economics, Econometric Society, vol. 15(3), July.
    9. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2019. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Post-Print hal-01887402, HAL.
    10. Penrose, Mathew D., 2000. "Central limit theorems for k-nearest neighbour distances," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 295-320, February.
    11. Grégoire, Gérard & Hamrouni, Zouhir, 2002. "Change Point Estimation by Local Linear Smoothing," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 56-83, October.
    12. Otis B. Jennings, 2008. "Heavy-Traffic Limits of Queueing Networks with Polling Stations: Brownian Motion in a Wedge," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 12-35, February.
    13. Ralescu, Stefan S. & Puri, Madan L., 1996. "Weak convergence of sequences of first passage processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 62(2), pages 327-345, July.
    14. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    15. Avishai Mandelbaum & Petar Momčilović, 2008. "Queues with Many Servers: The Virtual Waiting-Time Process in the QED Regime," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 561-586, August.
    16. S. Minkevičius & S. Steišūnas, 2006. "About the Sojourn Time Process in Multiphase Queueing Systems," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 293-302, June.
    17. Tyran-Kaminska, Marta, 2010. "Convergence to Lévy stable processes under some weak dependence conditions," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1629-1650, August.
    18. Gianmarco Bet & Remco van der Hofstad & Johan S. H. van Leeuwaarden, 2019. "Heavy-Traffic Analysis Through Uniform Acceleration of Queues with Diminishing Populations," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 821-864, August.
    19. G. Bet, 2020. "An alternative approach to heavy-traffic limits for finite-pool queues," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 121-144, June.
    20. Dijk, N.M. van, 1991. "On uniformization for nonhomogeneous Markov chains," Serie Research Memoranda 0006, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:3:p:1435-1460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.