IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i7p2485-2527.html
   My bibliography  Save this article

The survival probability of critical and subcritical branching processes in finite state space Markovian environment

Author

Listed:
  • Grama, Ion
  • Lauvergnat, Ronan
  • Le Page, Émile

Abstract

Let (Zn)n≥0 be a branching process in a random environment defined by a Markov chain (Xn)n≥0 with values in a finite state space X. Let Pi be the probability law generated by the trajectories of Xnn≥0 starting at X0=i∈X. We study the asymptotic behaviour of the joint survival probability PiZn>0,Xn=j, j∈X as n→+∞ in the critical and strongly, intermediate and weakly subcritical cases.

Suggested Citation

  • Grama, Ion & Lauvergnat, Ronan & Le Page, Émile, 2019. "The survival probability of critical and subcritical branching processes in finite state space Markovian environment," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2485-2527.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:7:p:2485-2527
    DOI: 10.1016/j.spa.2018.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918303636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dekking, F. M., 1987. "On the survival probability of a branching process in a finite state i.i.d. environment," Stochastic Processes and their Applications, Elsevier, vol. 27, pages 151-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:7:p:2485-2527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.