IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i7p2153-2178.html
   My bibliography  Save this article

Transportation distances and noise sensitivity of multiplicative Lévy SDE with applications

Author

Listed:
  • Gairing, Jan
  • Högele, Michael
  • Kosenkova, Tetiana

Abstract

This article assesses the distance between the laws of stochastic differential equations with multiplicative Lévy noise on path space in terms of their characteristics. The notion of transportation distance on the set of Lévy kernels introduced by Kosenkova and Kulik yields a natural and statistically tractable upper bound on the noise sensitivity. This extends recent results for the additive case in terms of coupling distances to the multiplicative case. The strength of this notion is shown in a statistical implementation for simulations and the example of a benchmark time series in paleoclimate.

Suggested Citation

  • Gairing, Jan & Högele, Michael & Kosenkova, Tetiana, 2018. "Transportation distances and noise sensitivity of multiplicative Lévy SDE with applications," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2153-2178.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:7:p:2153-2178
    DOI: 10.1016/j.spa.2017.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917302223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imkeller, P. & Pavlyukevich, I., 2006. "First exit times of SDEs driven by stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 116(4), pages 611-642, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakubowski, Tomasz, 2007. "The estimates of the mean first exit time from a ball for the [alpha]-stable Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1540-1560, October.
    2. Valentin Konakov & Stéphane Menozzi, 2011. "Weak Error for Stable Driven Stochastic Differential Equations: Expansion of the Densities," Journal of Theoretical Probability, Springer, vol. 24(2), pages 454-478, June.
    3. Pavlyukevich, Ilya, 2008. "Simulated annealing for Lévy-driven jump-diffusions," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1071-1105, June.
    4. Tong, Changqing & Lin, Zhengyan & Zheng, Jing, 2012. "The local time of the Markov processes of Ornstein–Uhlenbeck type," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1229-1234.
    5. Wang, Xiao & Duan, Jinqiao & Li, Xiaofan & Luan, Yuanchao, 2015. "Numerical methods for the mean exit time and escape probability of two-dimensional stochastic dynamical systems with non-Gaussian noises," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 282-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:7:p:2153-2178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.