IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i10p3387-3418.html
   My bibliography  Save this article

Backward problems for stochastic differential equations on the Sierpinski gasket

Author

Listed:
  • Liu, Xuan
  • Qian, Zhongmin

Abstract

In this paper, we study the non-linear backward problems (with deterministic or stochastic durations) of stochastic differential equations on the Sierpinski gasket. We prove the existence and uniqueness of solutions of backward stochastic differential equations driven by Brownian martingale (defined in Section 2) on the Sierpinski gasket constructed by S. Goldstein and S. Kusuoka. The exponential integrability of quadratic processes for martingale additive functionals is obtained, and as an application, a Feynman–Kac representation formula for weak solutions of semi-linear parabolic PDEs on the gasket is also established.

Suggested Citation

  • Liu, Xuan & Qian, Zhongmin, 2018. "Backward problems for stochastic differential equations on the Sierpinski gasket," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3387-3418.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:10:p:3387-3418
    DOI: 10.1016/j.spa.2017.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917302806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hinz, Michael & Röckner, Michael & Teplyaev, Alexander, 2013. "Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on metric measure spaces," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4373-4406.
    2. Stoica, I. L., 2003. "A probabilistic interpretation of the divergence and BSDE's," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yu & Xiaochuan Luo & Huaxi (Yulin) Zhang & Qingxin Zhang, 2019. "The Solution of Backward Heat Conduction Problem with Piecewise Linear Heat Transfer Coefficient," Mathematics, MDPI, vol. 7(5), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matoussi, A. & Piozin, L. & Popier, A., 2017. "Stochastic partial differential equations with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 831-876.
    2. Lejay, Antoine, 2004. "A probabilistic representation of the solution of some quasi-linear PDE with a divergence form operator. Application to existence of weak solutions of FBSDE," Stochastic Processes and their Applications, Elsevier, vol. 110(1), pages 145-176, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:10:p:3387-3418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.