IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i2p359-384.html
   My bibliography  Save this article

Continuity and Gaussian two-sided bounds of the density functions of the solutions to path-dependent stochastic differential equations via perturbation

Author

Listed:
  • Kusuoka, Seiichiro

Abstract

We consider Markovian stochastic differential equations with low regular coefficients and their perturbations by adding a measurable bounded path-dependent drift term. When we assume the diffusion coefficient matrix is uniformly positive definite, then the solution to the perturbed equation is given by the Girsanov transformation of the original equation. By using the expression we obtain the Gaussian two-sided bounds and the continuity of the density function of the solution to the perturbed equation. We remark that the perturbation in the present paper is a stochastic analogue to the perturbation in the operator analysis.

Suggested Citation

  • Kusuoka, Seiichiro, 2017. "Continuity and Gaussian two-sided bounds of the density functions of the solutions to path-dependent stochastic differential equations via perturbation," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 359-384.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:2:p:359-384
    DOI: 10.1016/j.spa.2016.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao Fabrice Djete, 2022. "Non--regular McKean--Vlasov equations and calibration problem in local stochastic volatility models," Papers 2208.09986, arXiv.org, revised Oct 2024.
    2. Naganuma, Nobuaki & Taguchi, Dai, 2020. "Malliavin calculus for non-colliding particle systems," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2384-2406.
    3. Mao Fabrice Djete & Gaoyue Guo & Nizar Touzi, 2023. "Mean field game of mutual holding with defaultable agents, and systemic risk," Papers 2303.07996, arXiv.org.
    4. Ngo, Hoang-Long & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 102-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:2:p:359-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.