IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i12p3825-3869.html
   My bibliography  Save this article

Fluctuations of the total number of critical points of random spherical harmonics

Author

Listed:
  • Cammarota, V.
  • Wigman, I.

Abstract

We determine the asymptotic law for the fluctuations of the total number of critical points of random Gaussian spherical harmonics in the high degree limit. Our results have implications on the sophistication degree of an appropriate percolation process for modelling nodal domains of eigenfunctions on generic compact surfaces or billiards.

Suggested Citation

  • Cammarota, V. & Wigman, I., 2017. "Fluctuations of the total number of critical points of random spherical harmonics," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3825-3869.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:12:p:3825-3869
    DOI: 10.1016/j.spa.2017.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491530123X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentina Cammarota & Domenico Marinucci, 2022. "On the Correlation of Critical Points and Angular Trispectrum for Random Spherical Harmonics," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2269-2303, December.
    2. Cammarota, Valentina & Marinucci, Domenico, 2020. "A reduction principle for the critical values of random spherical harmonics," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2433-2470.
    3. Muirhead, Stephen, 2020. "A second moment bound for critical points of planar Gaussian fields in shrinking height windows," Statistics & Probability Letters, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:12:p:3825-3869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.