IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i7p2092-2122.html
   My bibliography  Save this article

Statistical inference for time-changed Lévy processes via Mellin transform approach

Author

Listed:
  • Belomestny, Denis
  • Schoenmakers, John

Abstract

Given a Lévy process (Lt)t≥0 and an independent nondecreasing process (time change) (T(t))t≥0, we consider the problem of statistical inference on T based on low-frequency observations of the time-changed Lévy process LT(t). Our approach is based on the genuine use of Mellin and Laplace transforms. We propose a consistent estimator for the density of the increments of T in a stationary regime, derive its convergence rates and prove the optimality of the rates. It turns out that the convergence rates heavily depend on the decay of the Mellin transform of T. Finally, the performance of the estimator is analysed via a Monte Carlo simulation study.

Suggested Citation

  • Belomestny, Denis & Schoenmakers, John, 2016. "Statistical inference for time-changed Lévy processes via Mellin transform approach," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2092-2122.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:7:p:2092-2122
    DOI: 10.1016/j.spa.2016.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916000168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belomestny, Denis & Schoenmakers, John, 2015. "Statistical Skorohod embedding problem: Optimality and asymptotic normality," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 169-180.
    2. Adam D. Bull, 2013. "Estimating time-changes in noisy L\'evy models," Papers 1312.5911, arXiv.org, revised Nov 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Carr & A. Itkin & D. Muravey, 2022. "Semi-analytical pricing of barrier options in the time-dependent Heston model," Papers 2202.06177, arXiv.org.
    2. Gery Geenens, 2021. "Mellin–Meijer kernel density estimation on $${{\mathbb {R}}}^+$$ R +," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 953-977, October.
    3. Shimizu, Yasutaka & Zhang, Zhimin, 2017. "Estimating Gerber–Shiu functions from discretely observed Lévy driven surplus," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 84-98.
    4. Viktor Schulmann, 2021. "Estimation of stopping times for stopped self-similar random processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 477-498, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam D. Bull, 2014. "Near-optimal estimation of jump activity in semimartingales," Papers 1409.8150, arXiv.org, revised Jan 2016.
    2. Todorov, Viktor, 2021. "Higher-order small time asymptotic expansion of Itô semimartingale characteristic function with application to estimation of leverage from options," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 671-705.
    3. Weiwei Guo & Lingfei Li, 2019. "Parametric inference for discretely observed subordinate diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 77-110, April.
    4. Viktor Schulmann, 2021. "Estimation of stopping times for stopped self-similar random processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 477-498, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:7:p:2092-2122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.