IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i12p3888-3912.html
   My bibliography  Save this article

Rho-estimators for shape restricted density estimation

Author

Listed:
  • Baraud, Y.
  • Birgé, L.

Abstract

The purpose of this paper is to pursue our study of ρ-estimators built from i.i.d. observations that we defined in Baraud et al. (2014). For a ρ-estimator based on some model S¯ (which means that the estimator belongs to S¯) and a true distribution of the observations that also belongs to S¯, the risk (with squared Hellinger loss) is bounded by a quantity which can be viewed as a dimension function of the model and is often related to the “metric dimension” of this model, as defined in Birgé (2006). This is a minimax point of view and it is well-known that it is pessimistic. Typically, the bound is accurate for most points in the model but may be very pessimistic when the true distribution belongs to some specific part of it. This is the situation that we want to investigate here. For some models, like the set of decreasing densities on [0,1], there exist specific points in the model that we shall call extremal and for which the risk is substantially smaller than the typical risk. Moreover, the risk at a non-extremal point of the model can be bounded by the sum of the risk bound at a well-chosen extremal point plus the square of its distance to this point. This implies that if the true density is close enough to an extremal point, the risk at this point may be smaller than the minimax risk on the model and this actually remains true even if the true density does not belong to the model. The result is based on some refined bounds on the suprema of empirical processes that are established in Baraud (2016).

Suggested Citation

  • Baraud, Y. & Birgé, L., 2016. "Rho-estimators for shape restricted density estimation," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3888-3912.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3888-3912
    DOI: 10.1016/j.spa.2016.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Lecué & Mathieu Lerasle, 2017. "Robust machine learning by median-of-means : theory and practice," Working Papers 2017-32, Center for Research in Economics and Statistics.
    2. Lecué, Guillaume & Lerasle, Matthieu, 2019. "Learning from MOM’s principles: Le Cam’s approach," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4385-4410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3888-3912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.