IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i12p3774-3789.html
   My bibliography  Save this article

Minimal penalty for Goldenshluger–Lepski method

Author

Listed:
  • Lacour, C.
  • Massart, P.

Abstract

This paper is concerned with adaptive nonparametric estimation using the Goldenshluger–Lepski selection method. This estimator selection method is based on pairwise comparisons between estimators with respect to some loss function. The method also involves a penalty term that typically needs to be large enough in order that the method works (in the sense that one can prove some oracle type inequality for the selected estimator). In the case of density estimation with kernel estimators and a quadratic loss, we show that the procedure fails if the penalty term is chosen smaller than some critical value for the penalty: the minimal penalty. More precisely we show that the quadratic risk of the selected estimator explodes when the penalty is below this critical value while it stays under control when the penalty is above this critical value. This kind of phase transition phenomenon for penalty calibration has already been observed and proved for penalized model selection methods in various contexts but appears here for the first time for the Goldenshluger–Lepski pairwise comparison method. Some simulations illustrate the theoretical results and lead to some hints on how to use the theory to calibrate the method in practice.

Suggested Citation

  • Lacour, C. & Massart, P., 2016. "Minimal penalty for Goldenshluger–Lepski method," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3774-3789.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3774-3789
    DOI: 10.1016/j.spa.2016.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claire Lacour & Pascal Massart & Vincent Rivoirard, 2017. "Estimator Selection: a New Method with Applications to Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 298-335, August.
    2. Charlotte Dion, 2016. "Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 919-951, November.
    3. Gautier, Eric & Gaillac, Christophe, 2019. "Adaptive estimation in the linear random coefficients model when regressors have limited variation," TSE Working Papers 19-1026, Toulouse School of Economics (TSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:12:p:3774-3789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.