IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i12p3986-4011.html
   My bibliography  Save this article

A class of asymptotically self-similar stable processes with stationary increments

Author

Listed:
  • Can, Sami Umut

Abstract

We generalize the BM-local time fractional symmetric α-stable motion introduced in Cohen and Samorodnitsky (2006) by replacing the local time with a general continuous additive functional (CAF). We show that the resulting process is again symmetric α-stable with stationary increments. Depending on the CAF, the process is either self-similar or lies in the domain of attraction of the BM-local time fractional symmetric α-stable motion. We also show that the process arises as a weak limit of a discrete “random rewards scheme” similar to the one described by Cohen and Samorodnitsky.

Suggested Citation

  • Can, Sami Umut, 2014. "A class of asymptotically self-similar stable processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 3986-4011.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:12:p:3986-4011
    DOI: 10.1016/j.spa.2014.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414914001732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2014.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cambanis, Stamatis & Maejima, Makoto, 1989. "Two classes of self-similar stable processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 305-329, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsing, Tailen, 1995. "Limit theorems for stable processes with application to spectral density estimation," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 39-71, May.
    2. Marie-Eliette Dury & Bing Xiao, 2018. "Forecasting the Volatility of the Chinese Gold Market by ARCH Family Models and extension to Stable Models," Working Papers hal-01709321, HAL.
    3. Mazur, Stepan & Otryakhin, Dmitry & Podolskij, Mark, 2018. "Estimation of the linear fractional stable motion," Working Papers 2018:3, Örebro University, School of Business.
    4. Pipiras, Vladas & Taqqu, Murad S. & Abry, Patrice, 2003. "Can continuous-time stationary stable processes have discrete linear representations?," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 147-157, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:12:p:3986-4011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.