IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i8p3052-3063.html
   My bibliography  Save this article

Exit times for multivariate autoregressive processes

Author

Listed:
  • Jung, Brita

Abstract

We study exit times from a set for a family of multivariate autoregressive processes with normally distributed noise. By using the large deviation principle, and other methods, we show that the asymptotic behavior of the exit time depends only on the set itself and on the covariance matrix of the stationary distribution of the process. The results are extended to exit times from intervals for the univariate autoregressive process of order n, where the exit time is of the same order of magnitude as the exponential of the inverse of the variance of the stationary distribution.

Suggested Citation

  • Jung, Brita, 2013. "Exit times for multivariate autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3052-3063.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:8:p:3052-3063
    DOI: 10.1016/j.spa.2013.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913000677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikael Petersson, 2017. "Quasi-Stationary Asymptotics for Perturbed Semi-Markov Processes in Discrete Time," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1047-1074, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:8:p:3052-3063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.