IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i5p1716-1728.html
   My bibliography  Save this article

Estimates for the density of functionals of SDEs with irregular drift

Author

Listed:
  • Kohatsu-Higa, Arturo
  • Makhlouf, Azmi

Abstract

We obtain upper and lower bounds for the density of a functional of a diffusion whose drift is bounded and measurable. The argument consists of using Girsanov’s theorem together with an Itô–Taylor expansion of the change of measure. One then applies Malliavin calculus techniques in a non-trivial manner so as to avoid the irregularity of the drift. An integration by parts formula for this set-up is obtained.

Suggested Citation

  • Kohatsu-Higa, Arturo & Makhlouf, Azmi, 2013. "Estimates for the density of functionals of SDEs with irregular drift," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1716-1728.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:5:p:1716-1728
    DOI: 10.1016/j.spa.2013.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491300015X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomonori Nakatsu, 2019. "Some Properties of Density Functions on Maxima of Solutions to One-Dimensional Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 32(4), pages 1746-1779, December.
    2. Baños, David & Krühner, Paul, 2017. "Hölder continuous densities of solutions of SDEs with measurable and path dependent drift coefficients," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1785-1799.
    3. Nguyen, Tien Dung, 2018. "Tail estimates for exponential functionals and applications to SDEs," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4154-4170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:5:p:1716-1728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.