IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i12p4129-4155.html
   My bibliography  Save this article

The reversibility and an SPDE for the generalized Fleming–Viot processes with mutation

Author

Listed:
  • Li, Zenghu
  • Liu, Huili
  • Xiong, Jie
  • Zhou, Xiaowen

Abstract

The (Ξ,A)-Fleming–Viot process with mutation is a probability-measure-valued process whose moment dual is similar to that of the classical Fleming–Viot process except that Kingman’s coalescent is replaced by the Ξ-coalescent, the coalescent with simultaneous multiple collisions. We first prove the existence of such a process for general mutation generator A. We then investigate its reversibility. We also study both the weak and strong uniqueness of the solution to the associated stochastic partial differential equation.

Suggested Citation

  • Li, Zenghu & Liu, Huili & Xiong, Jie & Zhou, Xiaowen, 2013. "The reversibility and an SPDE for the generalized Fleming–Viot processes with mutation," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4129-4155.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:12:p:4129-4155
    DOI: 10.1016/j.spa.2013.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491300183X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Hui & Li, Zenghu & Yang, Xu, 2014. "Stochastic equations of super-Lévy processes with general branching mechanism," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1519-1565.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:12:p:4129-4155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.