IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i2p498-521.html
   My bibliography  Save this article

Properties of the limit shape for some last-passage growth models in random environments

Author

Listed:
  • Lin, Hao
  • Seppäläinen, Timo

Abstract

We study directed last-passage percolation on the planar square lattice whose weights have general distributions, or equivalently, queues in series with general service distributions. Each row of the last-passage model has its own randomly chosen weight distribution. We investigate the limiting time constant close to the boundary of the quadrant. Close to the y-axis, where the number of random distributions averaged over stays large, the limiting time constant takes the same universal form as in the homogeneous model. But close to the x-axis we see the effect of the tail of the distribution of the random environment.

Suggested Citation

  • Lin, Hao & Seppäläinen, Timo, 2012. "Properties of the limit shape for some last-passage growth models in random environments," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 498-521.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:498-521
    DOI: 10.1016/j.spa.2011.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911002237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2011.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andjel, E. D. & Ferrari, P. A. & Guiol, H. & Landim *, C., 2000. "Convergence to the maximal invariant measure for a zero-range process with random rates," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 67-81, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armendáriz, Inés & Grosskinsky, Stefan & Loulakis, Michail, 2013. "Zero-range condensation at criticality," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3466-3496.
    2. Mailler, Cécile & Mörters, Peter & Ueltschi, Daniel, 2016. "Condensation and symmetry-breaking in the zero-range process with weak site disorder," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3283-3309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:498-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.