Functional central limit theorems for self-normalized least squares processes in regression with possibly infinite variance data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2011.07.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maller, R. A., 1993. "Quadratic Negligibility and the Asymptotic Normality of Operator Normed Sums," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 191-219, February.
- Vu, H. T. V. & Maller, R. A. & Klass, M. J., 1996. "On the Studentisation of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 142-155, April.
- Rackauskas, Alfredas & Suquet, Charles, 2001. "Invariance principles for adaptive self-normalized partial sums processes," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 63-81, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Martsynyuk, Yuliya V., 2012. "Invariance principles for a multivariate Student process in the generalized domain of attraction of the multivariate normal law," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2270-2277.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martsynyuk, Yuliya V., 2013. "On the generalized domain of attraction of the multivariate normal law and asymptotic normality of the multivariate Student t-statistic," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 402-411.
- Kesten, Harry & Maller, R. A., 1997. "Random Deletion Does Not Affect Asymptotic Normality or Quadratic Negligibility," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 136-179, October.
- Martsynyuk, Yuliya V., 2012. "Invariance principles for a multivariate Student process in the generalized domain of attraction of the multivariate normal law," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2270-2277.
- Maller, Ross A. & Mason, David M., 2015. "Matrix normalized convergence of a Lévy process to normality at zero," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2353-2382.
- Hongchang Hu & Weifu Hu & Xinxin Yu, 2021. "Pseudo-maximum likelihood estimators in linear regression models with fractional time series," Statistical Papers, Springer, vol. 62(2), pages 639-659, April.
- Mark M. Meerschaert & Hans-Peter Scheffler, 1999. "Sample Covariance Matrix for Random Vectors with Heavy Tails," Journal of Theoretical Probability, Springer, vol. 12(3), pages 821-838, July.
- H. Vu & R. Maller & X. Zhou, 1998. "Asymptotic Properties of a Class of Mixture Models for Failure Data: The Interior and Boundary Cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 627-653, December.
- Alfredas Račkauskas & Charles Suquet, 2004. "Necessary and Sufficient Condition for the Functional Central Limit Theorem in Hölder Spaces," Journal of Theoretical Probability, Springer, vol. 17(1), pages 221-243, January.
- Raluca Balan & Kulik, 2005. "Self-Normalized Weak Invariance Principle for Mixing Sequences," RePAd Working Paper Series lrsp-TRS417, Département des sciences administratives, UQO.
- Maller, R. A., 2003. "Asymptotics of regressions with stationary and nonstationary residuals," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 33-67, May.
- Kulik, Rafal, 2006. "Limit theorems for self-normalized linear processes," Statistics & Probability Letters, Elsevier, vol. 76(18), pages 1947-1953, December.
- Sepanski, Steven J., 1996. "Asymptotics for multivariate t-statistic for random vectors in the generalized domain of attraction of the multivariate normal law," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 179-188, October.
- Choi, K. C. & Zhou, X., 2002. "Large Sample Properties of Mixture Models with Covariates for Competing Risks," Journal of Multivariate Analysis, Elsevier, vol. 82(2), pages 331-366, August.
More about this item
Keywords
Simple linear regression; Domain of attraction of the normal law; Infinite variance; Slowly varying function at infinity; Studentized/self-normalized least squares estimator/process; Cholesky square root of a matrix; Symmetric positive definite square root of a matrix; Standard/bivariate Wiener process; Functional central limit theorem; Sup–norm approximation in probability; Direct product of two measurable spaces; Uniform Euclidean norm approximation in probability; Asymptotic confidence interval; Signal-to-noise ratio; Generalized domain of attraction of the d-variate normal law;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:12:p:2925-2953. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.