IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i12p2925-2953.html
   My bibliography  Save this article

Functional central limit theorems for self-normalized least squares processes in regression with possibly infinite variance data

Author

Listed:
  • Csörgő, Miklós
  • Martsynyuk, Yuliya V.

Abstract

Based on an R2-valued random sample {(yi,xi),1≤i≤n} on the simple linear regression model yi=xiβ+α+εi with unknown error variables εi, least squares processes (LSPs) are introduced in D[0,1] for the unknown slope β and intercept α, as well as for the unknown β when α=0. These LSPs contain, in both cases, the classical least squares estimators (LSEs) for these parameters. It is assumed throughout that {(x,ε),(xi,εi),i≥1} are i.i.d. random vectors with independent components x and ε that both belong to the domain of attraction of the normal law, possibly both with infinite variances. Functional central limit theorems (FCLTs) are established for self-normalized type versions of the vector of the introduced LSPs for (β,α), as well as for their various marginal counterparts for each of the LSPs alone, respectively via uniform Euclidean norm and sup–norm approximations in probability. As consequences of the obtained FCLTs, joint and marginal central limit theorems (CLTs) are also discussed for Studentized and self-normalized type LSEs for the slope and intercept. Our FCLTs and CLTs provide a source for completely data-based asymptotic confidence intervals for β and α.

Suggested Citation

  • Csörgő, Miklós & Martsynyuk, Yuliya V., 2011. "Functional central limit theorems for self-normalized least squares processes in regression with possibly infinite variance data," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2925-2953.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:12:p:2925-2953
    DOI: 10.1016/j.spa.2011.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911001839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2011.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maller, R. A., 1993. "Quadratic Negligibility and the Asymptotic Normality of Operator Normed Sums," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 191-219, February.
    2. Vu, H. T. V. & Maller, R. A. & Klass, M. J., 1996. "On the Studentisation of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 142-155, April.
    3. Rackauskas, Alfredas & Suquet, Charles, 2001. "Invariance principles for adaptive self-normalized partial sums processes," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 63-81, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martsynyuk, Yuliya V., 2012. "Invariance principles for a multivariate Student process in the generalized domain of attraction of the multivariate normal law," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2270-2277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martsynyuk, Yuliya V., 2013. "On the generalized domain of attraction of the multivariate normal law and asymptotic normality of the multivariate Student t-statistic," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 402-411.
    2. Maller, Ross A. & Mason, David M., 2015. "Matrix normalized convergence of a Lévy process to normality at zero," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2353-2382.
    3. Kesten, Harry & Maller, R. A., 1997. "Random Deletion Does Not Affect Asymptotic Normality or Quadratic Negligibility," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 136-179, October.
    4. Martsynyuk, Yuliya V., 2012. "Invariance principles for a multivariate Student process in the generalized domain of attraction of the multivariate normal law," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2270-2277.
    5. Hongchang Hu & Weifu Hu & Xinxin Yu, 2021. "Pseudo-maximum likelihood estimators in linear regression models with fractional time series," Statistical Papers, Springer, vol. 62(2), pages 639-659, April.
    6. Mark M. Meerschaert & Hans-Peter Scheffler, 1999. "Sample Covariance Matrix for Random Vectors with Heavy Tails," Journal of Theoretical Probability, Springer, vol. 12(3), pages 821-838, July.
    7. H. Vu & R. Maller & X. Zhou, 1998. "Asymptotic Properties of a Class of Mixture Models for Failure Data: The Interior and Boundary Cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 627-653, December.
    8. Alfredas Račkauskas & Charles Suquet, 2004. "Necessary and Sufficient Condition for the Functional Central Limit Theorem in Hölder Spaces," Journal of Theoretical Probability, Springer, vol. 17(1), pages 221-243, January.
    9. Raluca Balan & Kulik, 2005. "Self-Normalized Weak Invariance Principle for Mixing Sequences," RePAd Working Paper Series lrsp-TRS417, Département des sciences administratives, UQO.
    10. Maller, R. A., 2003. "Asymptotics of regressions with stationary and nonstationary residuals," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 33-67, May.
    11. Kulik, Rafal, 2006. "Limit theorems for self-normalized linear processes," Statistics & Probability Letters, Elsevier, vol. 76(18), pages 1947-1953, December.
    12. Sepanski, Steven J., 1996. "Asymptotics for multivariate t-statistic for random vectors in the generalized domain of attraction of the multivariate normal law," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 179-188, October.
    13. Choi, K. C. & Zhou, X., 2002. "Large Sample Properties of Mixture Models with Covariates for Competing Risks," Journal of Multivariate Analysis, Elsevier, vol. 82(2), pages 331-366, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:12:p:2925-2953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.