IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i12p2432-2446.html
   My bibliography  Save this article

R-positivity of nearest neighbor matrices and applications to Gibbs states

Author

Listed:
  • Littin, Jorge
  • Martínez, Servet

Abstract

We revisit the R-positivity of nearest neighbor matrices on and the Gibbs measures on the set of nearest neighbor trajectories on whose Hamiltonians award either visits to sites or visits to edges. We give conditions that guarantee the R-positivity or equivalently the existence of the infinite volume Gibbs measure. Moreover, we supply necessary and sufficient conditions for the geometric ergodicity of the associated Markov chain. In this work we generalize and sharpen results obtained in [7] and [11].

Suggested Citation

  • Littin, Jorge & Martínez, Servet, 2010. "R-positivity of nearest neighbor matrices and applications to Gibbs states," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2432-2446, December.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2432-2446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00215-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferrari, Pablo A. & Martínez, Servet, 1998. "Hamiltonians on random walk trajectories," Stochastic Processes and their Applications, Elsevier, vol. 78(1), pages 47-68, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrari, Pablo A. & Fontes, Luiz R. G. & Niederhauser, Beat M. & Vachkovskaia, Marina, 2004. "The serial harness interacting with a wall," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 175-190, November.
    2. De Coninck, Joël & Dunlop, François & Huillet, Thierry, 2009. "Random walk versus random line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4034-4040.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2432-2446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.