IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i10p1898-1907.html
   My bibliography  Save this article

On convergence determining and separating classes of functions

Author

Listed:
  • Blount, Douglas
  • Kouritzin, Michael A.

Abstract

Herein, we generalize and extend some standard results on the separation and convergence of probability measures. We use homeomorphism-based methods and work on incomplete metric spaces, Skorokhod spaces, Lusin spaces or general topological spaces. Our contributions are twofold: we dramatically simplify the proofs of several basic results in weak convergence theory and, concurrently, extend these results to apply more immediately in a number of settings, including on Lusin spaces.

Suggested Citation

  • Blount, Douglas & Kouritzin, Michael A., 2010. "On convergence determining and separating classes of functions," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1898-1907, September.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:1898-1907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00152-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kouritzin, Michael A. & LĂȘ, Khoa & Sezer, Deniz, 2019. "Laws of large numbers for supercritical branching Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3463-3498.
    2. Li, Liping & Li, Xiaodan, 2020. "Dirichlet forms and polymer models based on stable processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5940-5972.
    3. Iro Ren'e Kouarfate & Michael A. Kouritzin & Anne MacKay, 2020. "Explicit solution simulation method for the 3/2 model," Papers 2009.09058, arXiv.org, revised Jan 2021.
    4. Kouritzin, Michael A. & Ren, Yan-Xia, 2014. "A strong law of large numbers for super-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 505-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:1898-1907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.