IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i7p2277-2311.html
   My bibliography  Save this article

Stochastic 2-microlocal analysis

Author

Listed:
  • Herbin, Erick
  • Lévy-Véhel, Jacques

Abstract

A lot is known about the Hölder regularity of stochastic processes, in particular in the case of Gaussian processes. Recently, a finer analysis of the local regularity of functions, termed 2-microlocal analysis, has been introduced in a deterministic frame: through the computation of the so-called 2-microlocal frontier, it allows us in particular to predict the evolution of regularity under the action of (pseudo-)differential operators. In this work, we develop a 2-microlocal analysis for the study of certain stochastic processes. We show that moments of the increments allow us, under fairly general conditions, to obtain almost sure lower bounds for the 2-microlocal frontier. In the case of Gaussian processes, more precise results may be obtained: the incremental covariance yields the almost sure value of the 2-microlocal frontier. As an application, we obtain new and refined regularity properties of fractional Brownian motion, multifractional Brownian motion, stochastic generalized Weierstrass functions, Wiener and stable integrals.

Suggested Citation

  • Herbin, Erick & Lévy-Véhel, Jacques, 2009. "Stochastic 2-microlocal analysis," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2277-2311, July.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:7:p:2277-2311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00172-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neuman, Eyal, 2014. "The multifractal nature of Volterra–Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3121-3145.
    2. Antoine Ayache, 2013. "Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity," Journal of Theoretical Probability, Springer, vol. 26(1), pages 72-93, March.
    3. Biermé, Hermine & Lacaux, Céline & Scheffler, Hans-Peter, 2011. "Multi-operator scaling random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2642-2677, November.
    4. Alexandre Richard, 2017. "Some Singular Sample Path Properties of a Multiparameter Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1285-1309, December.
    5. Richard, Alexandre, 2015. "A fractional Brownian field indexed by L2 and a varying Hurst parameter," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1394-1425.
    6. Balança, Paul, 2015. "Some sample path properties of multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3823-3850.
    7. Hannebicque, Brice & Herbin, Érick, 2022. "Regularity of an abstract Wiener integral," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 154-196.
    8. Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
    9. Balança, Paul & Herbin, Erick, 2012. "2-microlocal analysis of martingales and stochastic integrals," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2346-2382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:7:p:2277-2311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.