IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i6p1866-1888.html
   My bibliography  Save this article

Gibbsianness versus non-Gibbsianness of time-evolved planar rotor models

Author

Listed:
  • van Enter, A.C.D.
  • Ruszel, W.M.

Abstract

We study the Gibbsian character of time-evolved planar rotor systems (that is, systems which have two-component, classical XY, spins) on , d>=2, in the transient regime, evolving with stochastic dynamics and starting from an initial Gibbs measure [nu]. We model the system with interacting Brownian diffusions moving on circles. We prove that for small times t and arbitrary initial Gibbs measures [nu], or for long times and both high- or infinite-temperature initial measure and dynamics, the evolved measure [nu]t stays Gibbsian. Furthermore, we show that for a low-temperature initial measure [nu] evolving under infinite-temperature dynamics there is a time interval (t0,t1) such that [nu]t fails to be Gibbsian for d>=2.

Suggested Citation

  • van Enter, A.C.D. & Ruszel, W.M., 2009. "Gibbsianness versus non-Gibbsianness of time-evolved planar rotor models," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1866-1888, June.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:6:p:1866-1888
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00143-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lacker, Daniel & Ramanan, Kavita & Wu, Ruoyu, 2021. "Locally interacting diffusions as Markov random fields on path space," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 81-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:6:p:1866-1888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.