IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i3p737-774.html
   My bibliography  Save this article

Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics

Author

Listed:
  • Gaudillière, A.
  • den Hollander, F.
  • Nardi, F.R.
  • Olivieri, E.
  • Scoppola, E.

Abstract

In this paper we consider a two-dimensional lattice gas under Kawasaki dynamics, i.e., particles hop around randomly subject to hard-core repulsion and nearest-neighbor attraction. We show that, at fixed temperature and in the limit as the particle density tends to zero, such a gas evolves in a way that is close to an ideal gas, where particles have no interaction. In particular, we prove three theorems showing that particle trajectories are non-superdiffusive and have a diffusive spread-out property. We also consider the situation where the temperature and the particle density tend to zero simultaneously and focus on three regimes corresponding to the stable, the metastable and the unstable gas, respectively. Our results are formulated in the more general context of systems of "Quasi-Random Walks", of which we show that the low-density lattice gas under Kawasaki dynamics is an example. We are able to deal with a large class of initial conditions having no anomalous concentration of particles and with time horizons that are much larger than the typical particle collision time. The results will be used in two forthcoming papers, dealing with metastable behavior of the two-dimensional lattice gas in large volumes at low temperature and low density.

Suggested Citation

  • Gaudillière, A. & den Hollander, F. & Nardi, F.R. & Olivieri, E. & Scoppola, E., 2009. "Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 737-774, March.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:3:p:737-774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00077-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bianchi, Alessandra & Gaudillière, Alexandre, 2016. "Metastable states, quasi-stationary distributions and soft measures," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1622-1680.
    2. Beltrán, J. & Landim, C., 2011. "Metastability of reversible finite state Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1633-1677, August.
    3. Landim, C., 2023. "Metastability from the large deviations point of view: A Γ-expansion of the level two large deviations rate functional of non-reversible finite-state Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 275-315.
    4. Baldassarri, Simone & Nardi, Francesca R., 2022. "Critical Droplets and sharp asymptotics for Kawasaki dynamics with weakly anisotropic interactions," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 107-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:3:p:737-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.