First hitting time and place for pseudo-processes driven by the equation subject to a linear drift
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Beghin, L. & Orsingher, E. & Ragozina, T., 2001. "Joint distributions of the maximum and the process for higher-order diffusions," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 71-93, July.
- Beghin, Luisa & Hochberg, Kenneth J. & Orsingher, Enzo, 2000. "Conditional maximal distributions of processes related to higher-order heat-type equations," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 209-223, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- D'Ovidio, Mirko & Orsingher, Enzo, 2011. "Bessel processes and hyperbolic Brownian motions stopped at different random times," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 441-465, March.
- Aimé Lachal, 2012. "A Survey on the Pseudo-process Driven by the High-order Heat-type Equation $\boldsymbol{\partial/\partial t=\pm\partial^N\!/\partial x^N}$ Concerning the Hitting and Sojourn Times," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 549-566, September.
- Ibragimov, I.A. & Smorodina, N.V. & Faddeev, M.M., 2015. "Limit theorems for symmetric random walks and probabilistic approximation of the Cauchy problem solution for Schrödinger type evolution equations," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4455-4472.
- Lachal, Aimé, 2014. "First exit time from a bounded interval for pseudo-processes driven by the equation ∂/∂t=(−1)N−1∂2N/∂x2N," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1084-1111.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lachal, Aimé, 2014. "First exit time from a bounded interval for pseudo-processes driven by the equation ∂/∂t=(−1)N−1∂2N/∂x2N," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1084-1111.
- Beghin, L. & Orsingher, E., 2005. "The distribution of the local time for "pseudoprocesses" and its connection with fractional diffusion equations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 1017-1040, June.
- Aimé Lachal, 2012. "A Survey on the Pseudo-process Driven by the High-order Heat-type Equation $\boldsymbol{\partial/\partial t=\pm\partial^N\!/\partial x^N}$ Concerning the Hitting and Sojourn Times," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 549-566, September.
- Beghin, L. & Orsingher, E. & Ragozina, T., 2001. "Joint distributions of the maximum and the process for higher-order diffusions," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 71-93, July.
- Bonaccorsi, Stefano & Mazzucchi, Sonia, 2015. "High order heat-type equations and random walks on the complex plane," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 797-818.
- van Noortwijk, J.M. & van der Weide, J.A.M. & Kallen, M.J. & Pandey, M.D., 2007. "Gamma processes and peaks-over-threshold distributions for time-dependent reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1651-1658.
- D'Ovidio, Mirko & Orsingher, Enzo, 2011. "Bessel processes and hyperbolic Brownian motions stopped at different random times," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 441-465, March.
More about this item
Keywords
Pseudo-process Joint distribution of the process and its maximum First hitting time and place Escape pseudo-probability Spitzer identities Boundary value problems;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:1:p:1-27. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.