IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i10p1519-1539.html
   My bibliography  Save this article

Senile reinforced random walks

Author

Listed:
  • Holmes, M.
  • Sakai, A.

Abstract

We consider random walks with transition probabilities depending on the number of consecutive traversals n of the edge most recently traversed. Such walks may get stuck on a single edge, or have every vertex recurrent or every vertex transient, depending on the reinforcement function f(n) that characterizes the model. We prove recurrence/transience results when the walk does not get stuck on a single edge. We also show that the diffusion constant need not be monotone in the reinforcement.

Suggested Citation

  • Holmes, M. & Sakai, A., 2007. "Senile reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1519-1539, October.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:10:p:1519-1539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00024-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger Bidaux & Nino Boccara, 2000. "Correlated Random Walks With A Finite Memory Range," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 921-947.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:10:p:1519-1539. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.