Another approach to Brownian motion
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jakubowski, Adam, 1993. "Minimal conditions in p-stable limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 44(2), pages 291-327, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
- Szewczak, Zbigniew S., 2001. "Relative Stability for Strictly Stationary Sequences," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 235-251, August.
- Raluca M. Balan & Sana Louhichi, 2009. "Convergence of Point Processes with Weakly Dependent Points," Journal of Theoretical Probability, Springer, vol. 22(4), pages 955-982, December.
- Zbigniew S. Szewczak, 2009. "On Limit Theorems for Continued Fractions," Journal of Theoretical Probability, Springer, vol. 22(1), pages 239-255, March.
- Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
- Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
- Szewczak, Zbigniew S., 2016. "Convergence of moments for strictly stationary sequences," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 200-203.
- Jakubowski, Adam, 1997. "Minimal conditions in p-stable limit theorems -- II," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 1-20, May.
- Damarackas, Julius & Paulauskas, Vygantas, 2017. "Spectral covariance and limit theorems for random fields with infinite variance," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 156-175.
- Yannick Malevergne & Pedro Santa-Clara & Didier Sornette, 2009. "Professor Zipf goes to Wall Street," NBER Working Papers 15295, National Bureau of Economic Research, Inc.
More about this item
Keywords
Lévy process Brownian motion Processes with independent increments Central limit theorem Weakly dependent sequences;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:2:p:279-292. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.