IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i1p70-100.html
   My bibliography  Save this article

The heat equation with time-independent multiplicative stable Lévy noise

Author

Listed:
  • Mueller, Carl
  • Mytnik, Leonid
  • Stan, Aurel

Abstract

We study the heat equation with a random potential term. The potential is a one-sided stable noise, with positive jumps, which does not depend on time. To avoid singularities, we define the equation in terms of a construction similar to the Skorokhod integral or Wick product. We give a criterion for existence based on the dimension of the space variable, and the parameter p of the stable noise. Our arguments are different for p

Suggested Citation

  • Mueller, Carl & Mytnik, Leonid & Stan, Aurel, 2006. "The heat equation with time-independent multiplicative stable Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 70-100, January.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:1:p:70-100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00107-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mueller, Carl, 1998. "The heat equation with Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 67-82, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Fei & Zhang, Yidi & Zhao, Shuangshuang, 2024. "Blow-up solution to an abstract non-local stochastic heat equation with Lévy noise," Statistics & Probability Letters, Elsevier, vol. 206(C).
    2. Jacob, Niels & Potrykus, Alexander & Wu, Jiang-Lun, 2010. "Solving a non-linear stochastic pseudo-differential equation of Burgers type," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2447-2467, December.
    3. Funaki, Tadahisa & Xie, Bin, 2009. "A stochastic heat equation with the distributions of Lévy processes as its invariant measures," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 307-326, February.
    4. Chong, Carsten, 2017. "Stochastic PDEs with heavy-tailed noise," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2262-2280.
    5. Debbi, Latifa & Dozzi, Marco, 2005. "On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1764-1781, November.
    6. Anh, V. V. & Leonenko, N. N., 1999. "Non-Gaussian scenarios for the heat equation with singular initial conditions," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 91-114, November.
    7. Carsten Chong, 2017. "Lévy-driven Volterra Equations in Space and Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1014-1058, September.
    8. Kosmala, Tomasz & Riedle, Markus, 2022. "Stochastic evolution equations driven by cylindrical stable noise," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 278-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:1:p:70-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.