IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i12p1964-1976.html
   My bibliography  Save this article

Convergence rates in strong ergodicity for Markov processes

Author

Listed:
  • Mao, Yong-Hua

Abstract

A coupling method is used to obtain the explicit upper and lower bounds for convergence rates in strong ergodicity for Markov processes. For one-dimensional diffusion processes and birth-death processes, these bounds are sharp in the sense that the upper one and the lower one only differ in a constant.

Suggested Citation

  • Mao, Yong-Hua, 2006. "Convergence rates in strong ergodicity for Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1964-1976, December.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:12:p:1964-1976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00078-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tao, 2022. "Ergodic convergence rates for time-changed symmetric Lévy processes in dimension one," Statistics & Probability Letters, Elsevier, vol. 183(C).
    2. Tomás Prieto-Rumeau & Onésimo Hernández-Lerma, 2016. "Uniform ergodicity of continuous-time controlled Markov chains: A survey and new results," Annals of Operations Research, Springer, vol. 241(1), pages 249-293, June.
    3. Shao, Jinghai, 2015. "Ergodicity of regime-switching diffusions in Wasserstein distances," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 739-758.
    4. Yong-Hua Mao & Tao Wang, 2022. "Convergence Rates in Uniform Ergodicity by Hitting Times and $$L^2$$ L 2 -Exponential Convergence Rates," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2690-2711, December.
    5. Guo, Chunyang & Liu, Yuanyuan, 2023. "Explicit Convergence Rates for the M/G/1 Queue under Perturbation," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:12:p:1964-1976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.