IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v10y1980i3p299-311.html
   My bibliography  Save this article

On an optimal stopping problem of Gusein-Zade

Author

Listed:
  • Frank, Arthur Q.
  • Samuels, Stephen M.

Abstract

We study the problem of selecting one of the r best of n rankable individuals arriving in random order, in which selection must be made with a stopping rule based only on the relative ranks of the successive arrivals. For each r up to r=25, we give the limiting (as n-->[infinity]) optimal risk (probability of not selecting one of the r best) and the limiting optimal proportion of individuals to let go by before being willing to stop. (The complete limiting form of the optimal stopping rule is presented for each r up to r=10, and for r=15, 20 and 25.) We show that, for large n and r, the optical risk is approximately (1-t*)r, where t*[approximate]0.2834 is obtained as the roof of a function which is the solution to a certain differential equation. The optimal stopping rule [tau]r,n lets approximately t*n arrivals go by and then stops 'almost immediately', in the sense that [tau]r,n/n-->t* in probability as n-->[infinity], r-->[infinity]

Suggested Citation

  • Frank, Arthur Q. & Samuels, Stephen M., 1980. "On an optimal stopping problem of Gusein-Zade," Stochastic Processes and their Applications, Elsevier, vol. 10(3), pages 299-311, October.
  • Handle: RePEc:eee:spapps:v:10:y:1980:i:3:p:299-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(80)90013-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Porosinski, Zdzislaw, 2003. "On optimal choosing of one of the k best objects," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 419-432, December.
    2. Demers, Simon, 2021. "Expected duration of the no-information minimum rank problem," Statistics & Probability Letters, Elsevier, vol. 168(C).
    3. Chris Dietz & Dinard van der Laan & Ad Ridder, 2010. "Approximate Results for a Generalized Secretary Problem," Tinbergen Institute Discussion Papers 10-092/4, Tinbergen Institute.
    4. Adam Woryna, 2017. "The solution of a generalized secretary problem via analytic expressions," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1469-1491, May.
    5. Abba M. Krieger & Ester Samuel-Cahn, 2014. "A generalized secretary problem," Discussion Paper Series dp668, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:10:y:1980:i:3:p:299-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.