IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v106y2003i2p245-277.html
   My bibliography  Save this article

Loss of mass in deterministic and random fragmentations

Author

Listed:
  • Haas, Bénédicte

Abstract

We consider a linear rate equation, depending on three parameters, that model fragmentation. For each of these fragmentation equations, there is a corresponding stochastic model, from which we construct an explicit solution to the equation. This solution is proved unique. We then use this solution to obtain criteria for the presence or absence of loss of mass in the fragmentation equation, as a function of the equation parameters. Next, we investigate small and large times asymptotic behavior of the total mass for a wide class of parameters. Finally, we study the loss of mass in the stochastic models.

Suggested Citation

  • Haas, Bénédicte, 2003. "Loss of mass in deterministic and random fragmentations," Stochastic Processes and their Applications, Elsevier, vol. 106(2), pages 245-277, August.
  • Handle: RePEc:eee:spapps:v:106:y:2003:i:2:p:245-277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00045-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cepeda, Eduardo, 2016. "Stochastic coalescence multi-fragmentation processes," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 360-391.
    2. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    3. Bertoin, Jean, 2004. "On small masses in self-similar fragmentations," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 13-22, January.
    4. Bénédicte Haas, 2007. "Fragmentation Processes with an Initial Mass Converging to Infinity," Journal of Theoretical Probability, Springer, vol. 20(4), pages 721-758, December.
    5. Wagner Wolfgang, 2010. "Random and deterministic fragmentation models," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 399-420, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:106:y:2003:i:2:p:245-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.