Author
Listed:
- Jahed, Ali
- Hadji Molana, Seyyed Mohammad
- Tavakkoli-Moghaddam, Reza
Abstract
Heterologous and homologous Coronavirus Disease 2019 (COVID-19) vaccination against Severe Acute Respiratory Syndrome (SARS)-CoV-2 are robust and proactively adaptable strategies. However, there is still a lack of appropriate mathematical models for integrating vaccination strategies into the vaccine supply chain network. This study develops a supply-production-distribution-inventory-allocation problem in the Sustainable Vaccine Supply-Production-Distribution Network (SVSPDN) to fill this gap for the first time. The outstanding novelties of this research are prioritizing vaccines and sequencing injection doses to increase vaccination effectiveness. In addition, the remarkable new contribution of the proposed mathematical model is the design of new bi-objective, multi-dose, multi-level, and multi-period to ensure the sustainability performance of the entire network. This aim is achievable by minimizing the cost of supplying, producing, and distributing vaccines and fulfilling social goals by maximizing vaccination effectiveness. Also, a scenario-based robust stochastic optimization approach is presented to handle uncertainties. Since the SVSPDN design is an NP-hard problem, to solve the proposed mathematical model, three Pareto-based evolutionary algorithms, including Non-Dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Gray Wolf Optimizer (MOGWO), are applied. The Taguchi design method is applied to tuning the parameters due to the sensitivity of meta-heuristic algorithms to input parameters. Then, a comparison is performed using four assessment metrics, including the Number of Pareto Solutions (NPS), Diversification Matrix (DM), Mean Ideal Distance (MID), Spread of Non-Dominance Solutions (SNS), and Computation Time (CT). The results reveal that the NSGA-II and MOGWO algorithms have performances that are very close to each other. However, MOGWO performs better in tackling the problem and is superior to the NSGA-II and MOPSO regarding assessment metrics and computation time. A case study of Iran is investigated to indicate the efficiency and applicability of the proposed model. Finally, sensitivity analyses, managerial insights, and practical implications are discussed.
Suggested Citation
Jahed, Ali & Hadji Molana, Seyyed Mohammad & Tavakkoli-Moghaddam, Reza, 2025.
"A sustainable vaccine supply-production-distribution network with heterologous and homologous vaccination strategies: Bi-objective optimization,"
Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
Handle:
RePEc:eee:soceps:v:98:y:2025:i:c:s0038012124003136
DOI: 10.1016/j.seps.2024.102113
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:98:y:2025:i:c:s0038012124003136. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.