IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v96y2024ics0038012124003124.html
   My bibliography  Save this article

Variable RTS in hierarchical network DEA: Enhancing efficiency in higher education systems

Author

Listed:
  • Xiao, Siwei
  • Kremantzis, Marios
  • Kyrgiakos, Leonidas Sotirios
  • Essien, Aniekan
  • Vlontzos, George

Abstract

This study presents a novel approach to Network Data Envelopment Analysis (DEA) by introducing “Returns to Scale (RTS) separation” within a hierarchical network DEA framework. Traditional DEA models, which often assume constant RTS, face limitations when analysing complex multi-functional structures. The proposed method, Variable RTS in Hierarchical Network DEA (VRS-HNDEA), addresses these limitations by integrating variable RTS, enabling a detailed efficiency analysis across hierarchical systems with heterogeneous sub-units. By utilising free variables, this model establishes distinct efficiency planes for simultaneous benchmarking of diverse subsystems, yielding a global efficiency frontier through the Minkowski addition of sub-system sets and analysed using an input-oriented enveloped form. Applied specifically to the higher education sector, the VRS-HNDEA model provides insights into the operational efficiency of various academic functions, including teaching, research, and administration. Key findings from this application demonstrate the model's ability to capture efficiency variations across hierarchical levels, supporting nuanced decisions on resource allocation and scale optimization. This framework, with its capability to recognise scale diversity across sub-systems, offers a significant tool for enhancing efficiency assessment in multi-layered public sector contexts, such as higher education, where comprehensive resource management is crucial.

Suggested Citation

  • Xiao, Siwei & Kremantzis, Marios & Kyrgiakos, Leonidas Sotirios & Essien, Aniekan & Vlontzos, George, 2024. "Variable RTS in hierarchical network DEA: Enhancing efficiency in higher education systems," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:soceps:v:96:y:2024:i:c:s0038012124003124
    DOI: 10.1016/j.seps.2024.102112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124003124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.102112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    2. V E Krivonozhko & O B Utkin & M M Safin & A V Lychev, 2009. "On some generalization of the DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1518-1527, November.
    3. Vladimir Krivonozhko & Finn Førsund & Andrey Lychev, 2012. "Returns-to-scale properties in DEA models: the fundamental role of interior points," Journal of Productivity Analysis, Springer, vol. 38(2), pages 121-130, October.
    4. Boussofiane, A. & Dyson, R. G. & Thanassoulis, E., 1991. "Applied data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 52(1), pages 1-15, May.
    5. Kao, Chiang & Hung, Hsi-Tai, 2008. "Efficiency analysis of university departments: An empirical study," Omega, Elsevier, vol. 36(4), pages 653-664, August.
    6. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    9. Antonio Peyrache & Maria C. A. Silva, 2023. "Efficiency decomposition for multi-level multi-components production technologies," Journal of Productivity Analysis, Springer, vol. 60(3), pages 273-294, December.
    10. Guoya Gan & Hsuan-Shih Lee & Lynne Lee & Xianmei Wang & Qianfeng Wang, 2020. "Network hierarchical DEA with an application to international shipping industry in Taiwan," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(6), pages 991-1002, June.
    11. De Witte, Kristof & Rogge, Nicky & Cherchye, Laurens & Van Puyenbroeck, Tom, 2013. "Economies of scope in research and teaching: A non-parametric investigation," Omega, Elsevier, vol. 41(2), pages 305-314.
    12. Rajiv D. Banker & William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Returns to Scale in DEA," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 41-70, Springer.
    13. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    14. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    15. Zhou, Xiaoyang & Xu, Zhongwen & Chai, Jian & Yao, Liming & Wang, Shouyang & Lev, Benjamin, 2019. "Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model," Omega, Elsevier, vol. 85(C), pages 68-82.
    16. Kong, Wei-Hsin & Fu, Tsu-Tan, 2012. "Assessing the performance of business colleges in Taiwan using data envelopment analysis and student based value-added performance indicators," Omega, Elsevier, vol. 40(5), pages 541-549.
    17. Banker, R. D. & Bardhan, I. & Cooper, W. W., 1996. "A note on returns to scale in DEA," European Journal of Operational Research, Elsevier, vol. 88(3), pages 583-585, February.
    18. Maryam Sarparast & Farhad Hosseinzadeh Lotfi & Alireza Amirteimoori & Zeshui Xu, 2022. "Investigating the Sustainability of Return to Scale Classification in a Two-Stage Network Based on DEA Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-19, December.
    19. Kuosmanen, Timo & Cherchye, Laurens & Sipilainen, Timo, 2006. "The law of one price in data envelopment analysis: Restricting weight flexibility across firms," European Journal of Operational Research, Elsevier, vol. 170(3), pages 735-757, May.
    20. C Kao, 2012. "Efficiency decomposition for parallel production systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 64-71, January.
    21. Chiang Kao, 2017. "Hierarchical Systems," International Series in Operations Research & Management Science, in: Network Data Envelopment Analysis, chapter 0, pages 335-353, Springer.
    22. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    23. V V Podinovski, 2004. "Bridging the gap between the constant and variable returns-to-scale models: selective proportionality in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 265-276, March.
    24. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    25. Kao, Chiang, 2015. "Efficiency measurement for hierarchical network systems," Omega, Elsevier, vol. 51(C), pages 121-127.
    26. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.
    27. Lee, Hsuan-Shih, 2021. "Efficiency decomposition of the network DEA in variable returns to scale: An additive dissection in losses," Omega, Elsevier, vol. 100(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. Peykani, Pejman & Seyed Esmaeili, Fatemeh Sadat & Pishvaee, Mir Saman & Rostamy-Malkhalifeh, Mohsen & Hosseinzadeh Lotfi, Farhad, 2024. "Matrix-based network data envelopment analysis: A common set of weights approach," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    4. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    5. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    6. Zarepisheh, M. & Soleimani-damaneh, M., 2009. "A dual simplex-based method for determination of the right and left returns to scale in DEA," European Journal of Operational Research, Elsevier, vol. 194(2), pages 585-591, April.
    7. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    8. Giokas, Dimitris I., 2008. "Assessing the efficiency in operations of a large Greek bank branch network adopting different economic behaviors," Economic Modelling, Elsevier, vol. 25(3), pages 559-574, May.
    9. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2018. "Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model," Journal of Informetrics, Elsevier, vol. 12(1), pages 10-30.
    10. Sanjeet Singh & Prabhat Ranjan, 2018. "Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education," Annals of Operations Research, Springer, vol. 269(1), pages 641-666, October.
    11. Kao, Chiang, 2015. "Efficiency measurement for hierarchical network systems," Omega, Elsevier, vol. 51(C), pages 121-127.
    12. M. Zarepisheh & E. Khorram & G. Jahanshahloo, 2010. "Returns to scale in multiplicative models in data envelopment analysis," Annals of Operations Research, Springer, vol. 173(1), pages 195-206, January.
    13. Hadjicostas, Petros & Soteriou, Andreas C., 2006. "One-sided elasticities and technical efficiency in multi-output production: A theoretical framework," European Journal of Operational Research, Elsevier, vol. 168(2), pages 425-449, January.
    14. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    15. Zelenyuk, Valentin, 2015. "Aggregation of scale efficiency," European Journal of Operational Research, Elsevier, vol. 240(1), pages 269-277.
    16. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.
    17. M Soleimani-damaneh, 2009. "A fast algorithm for determining some characteristics in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1528-1534, November.
    18. Zarepisheh, M. & Soleimani-damaneh, M., 2008. "Global variation of outputs with respect to the variation of inputs in performance analysis; generalized RTS," European Journal of Operational Research, Elsevier, vol. 186(2), pages 786-800, April.
    19. Podinovski, Victor V., 2017. "Returns to scale in convex production technologies," European Journal of Operational Research, Elsevier, vol. 258(3), pages 970-982.
    20. Tone, Kaoru & Sahoo, Biresh K., 2005. "Evaluating cost efficiency and returns to scale in the Life Insurance Corporation of India using data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 39(4), pages 261-285, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:96:y:2024:i:c:s0038012124003124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.