IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v94y2024ics003801212400123x.html
   My bibliography  Save this article

A dynamics model of the emergency medical supply chain in epidemic considering deprivation cost

Author

Listed:
  • Shi, Wenqiang
  • He, Jie
  • Wang, Mingyue
  • Yang, Fang

Abstract

Emergency medical supplies are the basic resources for epidemic prevention and reducing disaster losses. If the supplies cannot be provided in time, the victims will suffer psychological or physical pain. This paper uses the deprivation cost (DC) to measure the victims’ suffering in COVID-19 cases. After analyzing the dynamic relationship between epidemic control and supplies providing, a system dynamics (SD) model of emergency medical supply chain considering the deprivation cost is proposed. , based on the case of epidemic prevention in Wuhan, China, in early 2020, we explore the influence of the strength of the mobilization policy (SMP), concerns about data reliability (CDR), and public confidence in emergency response (PCER) on the operation of the supply chain, by which the effective strategies can be found to improve the efficiency of emergency supplies support. The results show that: at the late stage of epidemic control, concerns about data reliability will inhibit the growth of the demand fulfillment rate (DFR), while enhancing the strength of the mobilization policy can appropriately improve the demand fulfillment rate. Restoring public confidence in emergency response can delay personnel panic and contribute to epidemic control, but it has no significant effect on demand fulfillment rate and deprivation cost.

Suggested Citation

  • Shi, Wenqiang & He, Jie & Wang, Mingyue & Yang, Fang, 2024. "A dynamics model of the emergency medical supply chain in epidemic considering deprivation cost," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:soceps:v:94:y:2024:i:c:s003801212400123x
    DOI: 10.1016/j.seps.2024.101924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S003801212400123X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.101924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    2. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    3. Gutjahr, Walter J. & Fischer, Sophie, 2018. "Equity and deprivation costs in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 270(1), pages 185-197.
    4. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    5. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    6. Delgado-Lindeman, Maira & Arellana, Julián & Cantillo, Víctor, 2019. "Willingness to pay functions for emergency ambulance services," Journal of choice modelling, Elsevier, vol. 30(C), pages 28-37.
    7. Tzeng, Gwo-Hshiung & Cheng, Hsin-Jung & Huang, Tsung Dow, 2007. "Multi-objective optimal planning for designing relief delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 673-686, November.
    8. Xu, Yuanxian & Dong, Jianjun & Ren, Rui & Yang, Kai & Chen, Zhilong, 2022. "The impact of metro-based underground logistics system on city logistics performance under COVID-19 epidemic: A case study of Wuhan, China," Transport Policy, Elsevier, vol. 116(C), pages 81-95.
    9. Xihui Wang & Xiang Wang & Liang Liang & Xiaohang Yue & Luk N. Van Wassenhove, 2017. "Estimation of Deprivation Level Functions using a Numerical Rating Scale," Production and Operations Management, Production and Operations Management Society, vol. 26(11), pages 2137-2150, November.
    10. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    11. Hu, Shaolong & Dong, Zhijie Sasha, 2019. "Supplier selection and pre-positioning strategy in humanitarian relief," Omega, Elsevier, vol. 83(C), pages 287-298.
    12. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    13. Lina Yu & Huasheng Yang & Lixin Miao & Canrong Zhang, 2019. "Rollout algorithms for resource allocation in humanitarian logistics," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 887-909, August.
    14. Cross, Rod, 1993. "On the Foundations of Hysteresis in Economic Systems," Economics and Philosophy, Cambridge University Press, vol. 9(1), pages 53-74, April.
    15. Macea, Luis F. & Cantillo, Victor & Arellana, Julian, 2018. "Influence of attitudes and perceptions on deprivation cost functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 125-141.
    16. Cantillo, Victor & Serrano, Iván & Macea, Luis F. & Holguín-Veras, José, 2018. "Discrete choice approach for assessing deprivation cost in humanitarian relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 33-46.
    17. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02312250, HAL.
    18. Shao, Jianfang & Fan, Yu & Wang, Xihui & Liang, Changyong & Liang, Liang, 2023. "Designing a new framework agreement in humanitarian logistics based on deprivation cost functions," International Journal of Production Economics, Elsevier, vol. 256(C).
    19. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    20. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    21. Liao, Haiyan & Holguín-Veras, José & Calderón, Oriana, 2023. "Comparative analysis of the performance of humanitarian logistic structures using agent-based simulation," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    22. ManMohan S. Sodhi & Christopher S. Tang & Evan T. Willenson, 2023. "Research opportunities in preparing supply chains of essential goods for future pandemics," International Journal of Production Research, Taylor & Francis Journals, vol. 61(8), pages 2416-2431, April.
    23. Moshtari, Mohammad & Altay, Nezih & Heikkilä, Jussi & Gonçalves, Paulo, 2021. "Procurement in humanitarian organizations: Body of knowledge and practitioner's challenges," International Journal of Production Economics, Elsevier, vol. 233(C).
    24. Sadeghi, Azadeh & Aros-Vera, Felipe & Mosadegh, Hadi & YounesSinaki, Roohollah, 2023. "Social cost-vehicle routing problem and its application to the delivery of water in post-disaster humanitarian logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    2. Shao, Jianfang & Fan, Yu & Wang, Xihui & Liang, Changyong & Liang, Liang, 2023. "Designing a new framework agreement in humanitarian logistics based on deprivation cost functions," International Journal of Production Economics, Elsevier, vol. 256(C).
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Fan, Yu & Wang, Xihui & Zhu, Anqi & Shao, Jianfang & Liang, Liang, 2024. "Measuring the shortage cost through deprivation and envy in collaborating contract between the local authority and the enterprise," International Journal of Production Economics, Elsevier, vol. 271(C).
    5. Fernandez Pernett, Stephanie & Amaya, Johanna & Arellana, Julián & Cantillo, Victor, 2022. "Questioning the implication of the utility-maximization assumption for the estimation of deprivation cost functions after disasters," International Journal of Production Economics, Elsevier, vol. 247(C).
    6. Fan, Yu & Shao, Jianfang & Wang, Xihui & Liang, Liang, 2024. "Contract design between relief organisations and private-sector vendors: A humanitarian logistics framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    7. Fan, Yu & Shao, Jianfang & Wang, Xihui, 2023. "Relief items procurement and delivery through cooperation with suppliers and logistics companies considering budget constraints," International Journal of Production Economics, Elsevier, vol. 264(C).
    8. Amir Jamali & Amirhossein Ranjbar & Jafar Heydari & Sina Nayeri, 2022. "A multi-objective stochastic programming model to configure a sustainable humanitarian logistics considering deprivation cost and patient severity," Annals of Operations Research, Springer, vol. 319(1), pages 1265-1300, December.
    9. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Diehlmann, Florian & Hiemsch, Patrick S. & Wiens, Marcus & Lüttenberg, Markus & Schultmann, Frank, 2020. "A novel approach to include social costs in humanitarian objective functions," Working Paper Series in Production and Energy 52, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    11. Linlin Zhang & Na Cui, 2021. "Pre-Positioning Facility Location and Resource Allocation in Humanitarian Relief Operations Considering Deprivation Costs," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    12. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    13. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    14. Amaya, Johanna & Serrano, Ivan & Cantillo, Víctor & Arellana, Julián & Pérez, Cinthia C., 2024. "Implications of trust, preparedness, risk perceptions, and local context on deprivation costs and disaster relief planning," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    15. Rafiei, Rezvan & Huang, Kai & Verma, Manish, 2022. "Cash versus in-kind transfer programs in humanitarian operations: An optimization program and a case study," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    16. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    17. Timperio, Giuseppe & Kundu, Tanmoy & Klumpp, Matthias & de Souza, Robert & Loh, Xiu Hui & Goh, Kelvin, 2022. "Beneficiary-centric decision support framework for enhanced resource coordination in humanitarian logistics: A case study from ASEAN," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    18. Baharmand, Hossein & Comes, Tina & Lauras, Matthieu, 2019. "Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 86-110.
    19. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:94:y:2024:i:c:s003801212400123x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.