IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v29y1995i4p261-271.html
   My bibliography  Save this article

Integrated fire and ambulance siting: A deterministic model

Author

Listed:
  • Revelle, Charles
  • Snyder, Stephanie

Abstract

No abstract is available for this item.

Suggested Citation

  • Revelle, Charles & Snyder, Stephanie, 1995. "Integrated fire and ambulance siting: A deterministic model," Socio-Economic Planning Sciences, Elsevier, vol. 29(4), pages 261-271, December.
  • Handle: RePEc:eee:soceps:v:29:y:1995:i:4:p:261-271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0038-0121(95)00014-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    2. Charles ReVelle & Kathleen Hogan, 1989. "The Maximum Availability Location Problem," Transportation Science, INFORMS, vol. 23(3), pages 192-200, August.
    3. M S Daskin & K Hogan & C ReVelle, 1988. "Integration of Multiple, Excess, Backup, and Expected Covering Models," Environment and Planning B, , vol. 15(1), pages 15-35, March.
    4. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    5. ReVelle, Charles & Marianov, Vladimir, 1991. "A probabilistic FLEET model with individual vehicle reliability requirements," European Journal of Operational Research, Elsevier, vol. 53(1), pages 93-105, July.
    6. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    7. Vladimir Marianov & Charles ReVelle, 1992. "A Probabilistic Fire‐Protection Siting Model With Joint Vehicle Reliability Requirements," Papers in Regional Science, Wiley Blackwell, vol. 71(3), pages 217-241, July.
    8. ReVelle, Charles, 1993. "Facility siting and integer-friendly programming," European Journal of Operational Research, Elsevier, vol. 65(2), pages 147-158, March.
    9. ReVelle, Charles, 1989. "Review, extension and prediction in emergency service siting models," European Journal of Operational Research, Elsevier, vol. 40(1), pages 58-69, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Zhao & Qiuwen Chen, 2015. "Risk-based optimization of emergency rescue facilities locations for large-scale environmental accidents to improve urban public safety," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 163-189, January.
    2. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "Solving a location-routing problem with a multiobjective approach: the design of urban evacuation plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 206-218.
    3. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    4. Zhengna Song & Tinggan Yan & Yunjian Ge, 2018. "Spatial Equilibrium Allocation of Urban Large Public General Hospitals Based on the Welfare Maximization Principle: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(9), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    2. Marianov, Vladimir & ReVelle, Charles, 1996. "The Queueing Maximal availability location problem: A model for the siting of emergency vehicles," European Journal of Operational Research, Elsevier, vol. 93(1), pages 110-120, August.
    3. Aytug, Haldun & Saydam, Cem, 2002. "Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study," European Journal of Operational Research, Elsevier, vol. 141(3), pages 480-494, September.
    4. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    5. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    7. Saydam, Cem & Aytug, Haldun, 2003. "Accurate estimation of expected coverage: revisited," Socio-Economic Planning Sciences, Elsevier, vol. 37(1), pages 69-80, March.
    8. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    9. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    10. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    11. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    12. Current, John & Ratick, Samuel & ReVelle, Charles, 1998. "Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach," European Journal of Operational Research, Elsevier, vol. 110(3), pages 597-609, November.
    13. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    14. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    15. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    16. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    17. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    18. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    19. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    20. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:29:y:1995:i:4:p:261-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.