IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v75y2025ics0275531924005166.html
   My bibliography  Save this article

Volatility forecasting and volatility-timing strategies: A machine learning approach

Author

Listed:
  • Chun, Dohyun
  • Cho, Hoon
  • Ryu, Doojin

Abstract

Recent increases in stock price volatility have generated renewed interest in volatility-timing strategies. Based on high-dimensional models including machine learning, we predict stock market volatility and apply them to improve the performance of volatility-timing portfolios. Using various evaluation methods, we verify that those machine learning models have better prediction performances relative to the standard volatility models. Asset allocation results suggest that volatility-timing portfolios constructed using machine learning models tend to outperform the market, with higher average returns during the volatile market period. Our empirical evidence supports the application of machine learning in the construction of volatility-timing portfolios.

Suggested Citation

  • Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2025. "Volatility forecasting and volatility-timing strategies: A machine learning approach," Research in International Business and Finance, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:riibaf:v:75:y:2025:i:c:s0275531924005166
    DOI: 10.1016/j.ribaf.2024.102723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531924005166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2024.102723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Asset allocation; Machine learning; Volatility forecasting; Volatility-timing portfolio; Risk management;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:75:y:2025:i:c:s0275531924005166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.